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Preface 

In its fundamental curriculum document: “A Framework for Mathematics Curricula in Engineering 
Education”, SEFI’s Mathematics Interest Group uses the concept of “mathematical competence” to 
identify the goals of mathematics education in engineering study courses. Mathematical competence 
comprises the ability to understand and use mathematical concepts and procedures in relevant 
contexts and situations. The latter include mathematics-intensive application subjects like engineering 
mechanics or fundamentals of electronics within the study course but also the usage of mathematics 
in later work practice. Whereas information on application subjects can be gained within the university 
framework, it is much harder to investigate real workplaces. Most of the available studies on 
mathematics at workplaces are concerned with professions where an academic education is not 
required. There are not so many articles dealing with mathematics at engineering workplaces because 
it is not easy to really understand the work procedures, tasks and problems as an outsider. Moreover, 
the relevant publications are spread over different journals, books, and dissertations. This report is 
intended to provide the reader with an overview of available results from which it is easy to go deeper 
into single studies. It is hoped that it will inspire further investigations in a very under-researched, yet 
important area. 

It remains to thank SEFI’s Mathematics Interest Group, particularly the members of the Steering 
Committee (D. Velichova (Chair), M. Demlova, B. Olsson-Lehtonen, D. Dias Rasteiro, T. Gustafsson, D. 
Lawson, M. Brekke), for the opportunity to publish this document as a report for the Special Interest 
Group. Needless to say that for any error in this report the sole responsibility lies with the author.  
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1. Introduction 
In his introduction to a special issue of the journal “Educational Studies in Mathematics” in 2014, 
Bakker states that “the area of vocational education and workplace training has been chronically 
underrepresented in mathematics education research” (Bakker, 2014, p. 152). When it comes to 
engineering workplaces, the situation is even worse. The body of available research on using 
mathematical concepts, procedures and ways of thinking consists of only a few studies when one 
restricts engineering workplaces to those that require at least a Bachelor degree granted by a 
university. In this contribution I use this stricter definition, so I do not include technical qualifications 
e.g. of technicians which are also sometimes called “engineers” in literature. Given this narrower 
definition, virtually none of the studies in the most recent survey book (Bessot & Ridgway, 2000) was 
concerned with engineering workplaces. Since then, there were specific studies on structural engineers 
(Kent & Noss, 2002; Gainsburg, 2006, 2007, 2013), on industrial engineers (Cardella & Atman, 2005a,b; 
Cardella, 2006, 2010), on mechanical engineers (Alpers, 2006, 2010a), on electrical engineers (Romo 
Vasquez, 2009; Romo Vasquez & Castella, 2010; Hochmuth et al., 2014) as well as general studies on 
a broader spectrum of engineering (Goold & Devitt, 2012; v.d. Wal et al., 2017). The study by v.d. Wal 
et al. (2017) tries to extend results and concepts developed in studies on workers on an “intermediate 
level” (technically skilled workers) to the engineering profession, in particular the concept of “techno-
mathematical literacy” which will be discussed briefly in the next section. Not all of these studies do 
actually investigate real engineering workplaces; some try to capture mathematics in engineering work 
by probing into the mathematical thinking of engineering students working on projects with practical 
relevance. The advantages and problems of such approaches are discussed in (Alpers, 2010b) and will 
be briefly summarized below.  

This report is based on the studies mentioned above. It will try to give answers to the following 
questions: 

• What are we looking for: What counts as “mathematics” in engineering work?  
• How can we capture what we are looking for: Which research methods have been used and 

are they adequate? 
• Which results do we have so far: Can a common body of insights be identified? 
• Which conclusions can be drawn regarding the mathematical education of engineers? 

In the final section I will summarise the results and provide a short outlook on potential directions of 
future research. 
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2. What are we looking for? 
When studies investigate the relevance of mathematics taught at institutions (schools, universities) in 
workplace settings, “mathematics” is often identified with mathematical concepts and procedures 
(e.g. arithmetic, algebraic computations, solving equations, investigating functions). This has been 
denoted as “school mathematics” (Gainsburg, 2005) or – in order to include also university education 
– “curriculum mathematics” (Goold & Devitt, 2012). In studies on mathematics at workplaces that do 
not require an academic education, often a “gap” was found between “school mathematics” and really 
observable mathematical ‘behavior’ (Gainsburg, 2005, p. 13) resulting in questioning the usefulness of 
looking for “school mathematics” in general.  For engineering workplaces, this would be problematic, 
since one should expect the explicit occurrence of mathematical concepts and procedures at such 
workplaces. Therefore, Goold & Devitt (2012) tried to investigate the use of “curriculum mathematics” 
by engineers in Ireland. In order to make this more specific, they modified de Lange’s “assessment 
pyramid” for this purpose, as shown in figure 1. Three dimensions are used here: mathematical 
domains, usage type, and level. The mathematical domains seem to be problematic regarding 
engineering education since they are taken from the original pyramid developed for school 
mathematics. It is not clear how the areas treated in engineering mathematics should be mapped to 
this classification. Mapping one- and multidimensional calculus and differential equations all to the 
category “functions” seems to be rather misleading. So, although the idea of categorizing “curriculum 
mathematics” in a more systematic and comprehensive way seems to be reasonable, the specific 
arrangement needs more thought. 

 

Figure 1: Curriculum Mathematics (after Goold & Devitt, 2012, p. 165) 

 

It has been widely acknowledged that restricting oneself to observing direct occurrences of school or 
curriculum mathematics when investigating workplace mathematics results in too narrow a view of 
what counts as mathematics (Gainsburg, 2005). In order to broaden the view, notions like 
“mathematical behavior” or “mathematical thinking” have been used. The latter, specified in more 
detail by Schoenfeld (1992), is probably the most elaborated and influential concept. This was used by 
Cardella (2006, 2010) in her investigation of industrial engineering students working on their capstone 
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projects. Schoenfeld identifies five aspects of mathematical thinking which are: the knowledge base 
(cognitive resources, facts and procedures); use of resources (planning and monitoring); problem 
solving strategies; beliefs and affects (beliefs about one’s own capabilities, feelings towards 
mathematics); and mathematical practices (e.g. applying a mathematical perspective; mathematizing; 
dealing with uncertainty). It should be noted that one aspect of Schoenfeld’s conceptualization takes 
explicitly into account the affective dimension of mathematics usage. This has also been used by Goold 
& Devitt (2012) in their research to capture the role of mathematics in engineering in Ireland. 

Yet another elaborated way of conceptualizing mathematical behavior is provided by the concept of 
mathematical competence as specified by Mogens Niss (Niss, 2003; Niss & Højgaard, 2011). This has 
gained considerable influence via the OECD Pisa study series. It has also been used in the Curriculum 
Framework Document issued by the Mathematics Working Group of the European Society for 
Engineering Education (Alpers et al., 2013) and in a specific mathematics curriculum for a practice-
oriented study course in mechanical engineering (Alpers, 2014). Niss defines mathematical 
competence very broadly as “the ability to understand, judge, do and use mathematics in a variety of 
intra- and extra-mathematical contexts and situations where mathematics plays or could play a role” 
(Niss, 2003). This is then specified in more detail by identifying eight so-called competencies which are: 
mathematical thinking; mathematical reasoning; mathematical problem solving; mathematical 
modeling; representing mathematical entities; handling mathematical symbols and formalism; 
communicating in, with, and about mathematics; making use of aids and tools. The competencies 
overlap but have a distinct “kernel”. Looking for mathematical competence at the workplace would 
not only include the actual occurrence of such competence but also interesting instances of missing 
mathematical competence, e.g. when a mathematical approach “could have played a role”. This takes 
into account the critique by Gainsburg (2005) that research emphasizing the gap between school 
mathematics and everyday mathematics “may reveal what is but does not tell us what is possible” (p. 
9). No study has as yet explicitly used the competence approach for investigating engineering 
workplace mathematics. When conducting my own studies (Alpers, 2010a), I used a rather 
unelaborated concept of ‘mathematical qualification’ or ‘expertise’. But using the competence concept 
would facilitate to connect research results to mathematics curricula which are also specified in terms 
of mathematical competence (see Alpers, 2014). Then one could even use a common concept 
comprising both “curriculum mathematics” (concepts and procedures) and “mathematical behavior”. 

Taking into account that many workplaces rely on the use of technology one way or the other, (Hoyles 
et al., 2010) specifically looked for what they called “techno-mathematical literacy” (TmL) in their study 
of mathematics at intermediate-level workplaces. With respect to engineering, v.d. Wal et al. (2017) 
used the concept of TmL for interpreting the results of interviews conducted with engineers. Hoyles et 
al. (2010) define TmL as the ability to “understand and use mathematics as a language that will 
increasingly pervade the workplace through IT-based control and administration systems as much as 
conventional literacy (reading and writing) has pervaded working life for the last century. This literacy 
involves a language that is not mathematical but ‘techno-mathematical’, where mathematics is 
expressed through technological artefacts" (p. 14).  In engineering where the working environment 
(except for pure management positions) is full of technological tools (CAD, FEM, multibody dynamics 
simulation, machine element dimensioning programme, CFD, …) the mathematical competence 
necessary for using these tools in order to work on engineering tasks effectively and efficiently is 
certainly a major aspect to investigate. Nonetheless, the general mathematical competence approach 
does also include this aspect (cf. the competencies “making use of aids and tools” and “representing 
mathematical entities”) but has a broader view.  

A different approach to capturing mathematics usage is the one based on the “Anthropological Theory 
of Didactics” (ATD) developed by Chevallard which has been very influential in the French didactical 
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community. There, the concept of “praxeology” has been introduced which comprises tasks and 
techniques (practical block) as well as technology and theory (theoretical block) (also called the “4T-
model”). Here, technology is meant to be the explanation and justification of the used techniques, and 
theory is the theory this justification is based upon. A “praxeology” serves to describe and understand 
mathematical practices in an “institution” or community of practice.  This has been used by Romo 
Vasquez to analyze the work of students in their fourth-year projects (Romo Vasquez & Castela, 2010; 
Romo Vasquez, 2009) and by Hochmuth et al. (2014) to compare the use of mathematical concepts in 
signal analysis and mathematics lectures and text books. The 4T-structure helps to identify differences 
between praxeologies and the place where they occur. Yet, it is not as specific as the elaboration of 
mathematical thinking by Schoenfeld or the elaboration of mathematical competence by Niss.  

Instead of or in addition to taking an existing conceptualization of mathematical behavior to guide the 
investigation of workplaces, one might also try to develop categories of mathematics usage from the 
observation material itself. This is advocated by Gainsburg (2005, p. 15) who suggests that “researchers 
should allow new descriptive categories to grow from their observations and analyses”. A good 
example for this are the notions of “boundary objects” or “breakdown situations” introduced by the 
group around Hoyles and Noss (see Hoyles et al., 2010; Noss & Kent, 2002). 
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3. How can we capture what we are looking for? 
Regarding the second question stated above on how we can capture what we are looking for, we can 
distinguish between quantitative and qualitative methods. Only the study by Goold & Devitt (2012) 
applies quantitative measures among others in a mixed-methods approach. Their intention for doing 
so was to obtain data not just for a few ‘test persons’ but to measure the mathematics usage of the 
community of all 5755 chartered engineers in Ireland and to get not only qualitative but quantitative 
data for analyzing the relative importance of different parts of “curriculum mathematics” and 
“mathematical thinking” and the relationship with job roles and disciplines. A survey was conducted 
using a questionnaire capturing the “curriculum mathematics” pyramid depicted in figure 1. Engineers 
could mark on a Likert scale how often they used parts of “curriculum mathematics” resulting in 75 
marks for the different combinations. Attributes are attached to the Likert scale for explanatory 
purposes (1: “not at all”; 2: “very little”; 3: “a little”; 4: “quite a lot”; 5: “a very great deal”). In order to 
get quantitative data also on “mathematics behavior” Goold & Devitt (2012) included questions on the 
usage of “mathematical thinking” and on beliefs and affects (“self-efficacy”, enjoyment of 
mathematics, seeking a mathematical approach, …) using the same Likert scale. The questionnaire was 
sent to all chartered engineers and Goold & Devitt got 365 responses which is quite a good response 
rate. This quantitative approach raises several questions and concerns: 

• Goold & Devitt assume that they have got a random sample of the set of Irish chartered 
engineers. They substantiate this claim by showing that – among others –  different branches 
of engineering (civil, mechanical, electrical etc.) and different roles are represented properly. 
Still there remains the question whether the attitude towards mathematics does influence the 
willingness to answer such a large questionnaire. About 74% of the respondents state that 
they enjoyed mathematics in the last 6 months (p. 208) and about 80 % felt confident at it (p. 
211) “quite a lot” or “a very great deal” (cross at 4 or 5 on the Likert scale). Given that there 
has been a strong concern about the mathematical capabilities of beginning engineering 
students at many places (including Ireland) during the last fifteen to twenty years which 
resulted in mathematics support measures (cf. Alpers et al., 2013, p.53ff), it is questionable 
whether the respondents were really representative for the community of Irish chartered 
engineers regarding attitude and capabilities. Goold & Devitt (2012, p.451) also see this as a 
potential limitation. 

• When one wants to obtain quantitative data on the “role” of mathematics in engineering work, 
it might be problematic to just ask for the times of occurrence as was done in the Likert scale. 
Even if mathematical methods are used only once in a while they might be important for the 
overall success of a project. That has been observed by Goold & Devitt in the qualitative part 
of their study (interviews with 20 engineers) where it was stated that although mathematics 
takes up only 10% of the work this was an important part (“… that extra ten per cent that you 
actually get paid for at the end of the day”, p. 373). 

• In the Likert scale the numbers (1 to 5) are given additional meaning by providing a verbal 
explanation, presumably because the authors thought that the participants needed help in 
interpreting the pure numbers. It is not clear whether the choice of wording influences the 
behavior of the participants. One could, for example, expect “a little” to be attached rather to 
number 2; and there seems to be quite a difference between “a little” (=3) and “quite a lot” 
(=4).  

• It has often been stated in empirical workplace studies (Hoyles et al., 2010, p. 8) that those 
being observed did not realize that they ‘do mathematics’ or ‘behave mathematically’ because 
this was deeply embedded in their work routines. Therefore, the question should be raised 
whether the respondents of a questionnaire are really able to answer questions on their 
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mathematics usage. Regarding the study by Goold & Devitt this applies in particular to the level 
dimension of the “curriculum mathematics” pyramid and to the questions regarding 
“mathematical thinking”. Although there was some explanatory material given along with the 
questionnaire (but who reads this?), it is not sure whether engineers really understand the 
meaning of terms like “connecting” or “mathematising” developed by educational 
researchers. This is even more questionable for the term “mathematical thinking” for which 
the following list of examples is given as a result of interviewing engineers: “problem solving; 
‘big picture thinking’; decision making; logical thinking; estimation and confirmation of 
solution” (Goold & Devitt, 2012, p. 409). These are very broad explanations such that nearly 
every thinking process could be counted as mathematical thinking. Therefore, it is not 
surprising that it scored very high (over 4 on the Likert scale). 

What kind of information can one expect to get from such quantitative data? In the study by Goold & 
Devitt most combinations ended up scoring a mean of somewhere between 2 and three (“very little” 
and “a little”). The single numbers do not give much information, it is rather the comparison of 
numbers that could give information on the relative importance. If the data capture is very detailed 
(as is the case in the study with 75 single results on “curriculum mathematics”) this might be even 
counterproductive since it makes comparison with other data more problematic: When, for example, 
the importance of “curriculum mathematics” is compared with the importance of mathematical 
thinking by Goold & Devitt (see p. 252), they have the problem of “summing up” the data on the 75 
categories. One could ask provocatively whether 75 times “a little” is very much. The authors have 
recognized this interpretive problem themselves (p. 252: “a score of 2.73 out of 5 for overall mean 
usage is interpreted as a high score”). Therefore, a very careful questionnaire design is necessary that 
takes into account the kind of information one wants to obtain from the results. In their study, the 
authors got results on the relative importance of single points in the pyramid (compared to others and 
to the somewhat vague “mathematical thinking”) as well as on the relationship between roles 
(design/development; education; maintenance; management/project management; production) and 
discipline (civil; electrical; mechanical) on the one hand and importance on the other hand.  

All studies on mathematics at engineering workplaces apply qualitative methods. These include the 
following ones: 

• Engineers are observed when doing their daily work (see e.g. Noss & Kent (2002) and 
Gainsburg (2006) for structural engineers). This approach is called “ethnographic” research 
(see Hoyles et al., 2010; Zevenbergen, 2000). Zevenbergen distinguishes between real 
participation (“hard-core” ethnography) and ‘mere’ observation (“soft-core” ethnography). 
When it comes to engineering workplaces it will be hardly possible that the researcher can 
really participate because (s)he is not qualified for doing this. The observation is also 
somewhat restricted: Researchers can participate in meetings and observe discussions 
between engineers and learn from the problems and questions that come up there. But it is 
always the question whether they really are able to understand the problems. It is even more 
questionable if the researchers can see whether a more mathematical approach could be 
helpful (in the sense of “mathematical competence” defined by Niss as the ability to use 
mathematics in contexts and situations “where mathematics plays or could play a role” 
(underlining by B.A.)). This is discussed in more detail in (Alpers, 2010b). 

• Given the problems of observing “real engineers” working on projects, some researchers 
investigated the work of students in the last year of their study course when they were given 
special projects (capstone projects, see Cardella dissertation 2006) or tasks that might occur 
in the daily work of a junior engineer (see Alpers, 2010a; Romo Vasquez, 2009; Romo Vasquez 
& Castella, 2010). The students could make use of industry strength tools such that in this 
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respect the working environment of a real engineer is taken into account. This allows for 
deeper probing into the thought processes because it does not cost the valuable work time of 
an engineer; on the other hand, there is not the usual company environment and the 
restrictions of daily engineering work are not present. The chances and limitations of this 
approach are discussed in more detail in (Alpers, 2010b). 

• A further way to get information on the mathematics usage of real engineers is the (mostly 
semi-structured) interview. There, one can probe deeper into the mathematics usage as seen 
and recognized by the engineers themselves. Often the problem comes up that the engineers 
do not see their work as containing mathematical components because these are embedded 
in specific application contexts. Still, the restricted time frame for interviews (mostly 1-2 hours) 
leads to rather coarse insights, e.g. that “problem solving” or “software skills” are important. 

• A quite promising way to learn more about the usage and role of mathematics is the 
investigation of artefacts produced in the work and used for communication between different 
communities. This has been proven very informative in the work by Hoyles et al. (2010) where 
for example specific process control data sheets acted as “boundary objects” between 
different communities in a company. In engineering, such artefacts can be for example any 
programme output (Excel© worksheets, CAD, FEM, machine element dimensioning 
programme, measurement data sheet) or any requirement specification that serves as 
communication interface between those who set it up and those who have to produce 
something fulfilling it. Other documents like engineering guidelines (general ones issued by 
engineering bodies or company specific ones) can also be considered here. When 
mathematical concepts or models are embedded in such artefacts or programmes it is 
interesting which understanding of the mathematical model lying behind it is still necessary 
for the effective and efficient use. This can be particularly important in so-called “breakdown 
situations” (Noss & Kent, 2002; Alpers, 2010a) where the usual routines do not work any longer 
and a look ‘behind the interface’ is required. 

In Alpers (2010b) we state some general problems coming along with a qualitative approach. Since one 
investigates only a small sample of the diverse and heterogeneous engineering world, the question of 
whether it is possible to generalize the results comes up. The quantitative results by Goold & Devitt 
show that there is a dependence on role and discipline regarding mathematics usage. Therefore, 
qualitative studies should always make clear the boundary conditions of the investigation such that 
one can recognize potential limitations. It is also necessary to conduct several qualitative studies in 
different environments in order to get a more comprehensive picture. On the other hand can 
qualitative studies provide much deeper explanatory results for mathematics usage and thinking than 
is possible in surveys where it is always questionable whether the participants have the same 
understanding of a topic or a mark on a scale as the researcher. The categories developed so far to 
describe the kind of mathematical usage and behavior are helpful and can be used to inform education. 
The notions of “boundary objects”, “(in)visible mathematics”, “iterative working style”, and 
“breakdown situations” help to recognize where mathematical concepts and thinking might show up 
or are buried behind an interface, and where a mathematical approach might be necessary to 
overcome problem situations. 

Independent of the research method chosen, one problem will still be there: “Workplace Mathematics 
is a moving target” (Gainsburg, 2011, p. 117), so results may vary over the years such that a simple 
aggregation of scientific knowledge over decades might not be possible.  

For investigating mathematics in engineering workplaces an interdisciplinary approach is particularly 
promising. Ideally, the research would be conducted by a team consisting of an engineer, a 
mathematician, and a mathematics education researcher which can hardly be found in one person. 
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Having an engineer involved makes it possible to get information on how representative the observed 
behavior is. For example, in my own studies with final year students (Alpers, 2010a) I collaborated with 
a colleague from engineering to set up ‘realistic’ tasks for the students resembling tasks for junior 
engineers. Moreover, discussion of the results with this engineer revealed that the procedure 
performed by the students was typical for a specific situation in engineering: The students started with 
an initial design and then performed some goal-oriented iterations to come to an acceptable solution. 
An alternative would have been to set up an optimization model and perform mathematical 
optimization. Whereas the former is the usual procedure when creating special machines (low 
numbers), the latter is often used in serial production where small gains (“the last 5%”) are important. 
Here, having a mathematician is helpful in order to get an idea of mathematical alternatives, and the 
role of an engineer would include a judgment on the often context-specific suitability of the observed 
approach. Having an engineer makes it also possible to detect flaws in engineering work. Otherwise, 
there is the danger that the observed practice is uncritically considered as “good practice” although a 
different, maybe more mathematical approach requiring modelling competence, might have been 
better. In the study by Gainsburg (2006), for example, structural engineers discussed and finally used 
a model although it did not seem to fit properly (but had the advantage that it was acknowledged such 
that one was “on the safe side” when referring to it); it remains unresolved whether they could have 
come up with a more suitable model if their modeling competence had been better. Having an 
engineering colleague in the team has the additional advantage that (s)he can be questioned more 
deeply and more often (e.g. when new questions come up after a while) whereas availability of 
engineers at work is rather limited.  

The competence of an educational researcher is certainly needed for applying the qualitative and 
quantitative research methods and for relating the research to existing educational research. The 
theoretical and methodological issues discussed above definitely belong to this area: What counts as 
“mathematics” and how can it be captured? Educational researchers are also important when it comes 
to drawing conclusions from the research results regarding the mathematical education of engineers: 
Which learning scenarios are adequate for preparing engineers for making proper use of mathematics 
at later workplaces (or in application subjects). The article by Cardella (2008) can serve as an example 
for drawing such conclusions.  

The considerations presented above show that an interplay of the three roles could be very productive. 
The major challenge presented by such a scenario is to get a common understanding as far as this is 
necessary. It is neither possible nor required that the engineer or the mathematician fully understands 
the educational research methods or that the educational researcher fully understands the 
engineering problem and the mathematics used in there. The challenge rather consists of finding an 
adequate “interface” (“boundary objects” in the sense of Hoyles et al., 2010) across which a 
meaningful communication is possible.  The author experienced a similar situation when cooperating 
(as a mathematician) with engineers when writing engineering guidelines for the German Association 
of Engineers (VDI).   
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4. Which insights have been gained so far? 
Regarding the direct usage of “curriculum mathematics” Goold & Devitt (2012) provide quantitative 
data across engineering branches and job profiles based on their survey with 365 Irish engineers. As 
already discussed in the previous section, this information is necessarily coarse and must be 
interpreted with care. On the average, mathematics usage scored with 2.73 on a five-point Likert scale 
between 2 (“very little”) and 3 (“a little”) (p. 408). They found out that the average value depends on 
discipline (branch) and role in a company but could not detect more specific mathematics content 
profiles depending on branch and/or role. Of particular importance are “statistics and probability” in 
order to analyse and interpret data for making decisions (p. 388). Based on their interviews Goold & 
Devitt (2012, p. 434) conclude:  

“One key message about engineering practice that emerges from the study is summed up by one 
engineer who presents that in a “typical engineering company” only “a few people” do “maths at 
quite a high level”, there are “people below them who need to understand and interpret what they 
are doing and then others who just need to know the big picture””. 

Qualitative studies can give more detailed insights into used mathematical concepts but cannot be 
easily generalized across branches and profiles, so they provide rather ‘spot-lights’. In my own studies 
(cf. Alpers, 2010a) I listed several mathematical concepts students used when working on realistic tasks 
using state-of-the-art computer programs. The concepts were often directly connected with 
application meaning (velocity function, force vector) and this kind of embedding was also recognized 
by Kent & Noss (2002).    

Looking for direct occurrence of mathematical contents provides just one facet of mathematics usage; 
other ways of acting mathematically or being able to do so have been conceptualized as “mathematical 
thinking”, “mathematical competence” or “techno-mathematical literacy” as explained in the first 
section. The quantitative investigation by Goold & Devitt (2012) showed that the usage of 
“mathematical thinking” (comprising “problem solving, big picture thinking, decision making, logical 
thinking, estimation and confirmation of solution”, p. 385) scored significantly higher with a value of 
4.19 on the Likert scale and was independent of discipline and role. In the sequel I use the framework 
of mathematical competencies (cf. Niss, 2003; Niss & Højgaard, 2011) for ordering and presenting the 
currently available research results. This approach makes it easier to draw conclusions for educational 
practice since the same framework is often used in educational settings, particularly in the curriculum 
framework document issued by SEFI (Alpers et al., 2013). One should keep in mind that if aspects of 
competencies do not show up because they have not been observed, they might nevertheless be 
important for efficient and effective work. 

Thinking mathematically: Understanding and judging what kind of questions can be answered using 
mathematics and hence where a mathematical approach might be helpful. 

Using Schoenfeld’s five aspects of mathematical thinking for the analysis of students working on 
realistic projects, Cardella & Atman (2005a) concluded that “having a mathematical perspective and a 
mathematical vocabulary” was important for successful work. Based on her workplace studies,  
Gainsburg (2007) promotes “skeptical reverence” as adequate attitude of engineers towards the role 
of mathematics: mathematics is not the ‘golden bullet’ for solving all engineering problems but it is a 
useful tool. So, formulating a problem in mathematical terms can be helpful but other non-
mathematical issues are also important and have to be taken into account. (Goold & Devitt 2012) 
include the affective domain in their analysis comprising self-efficacy and motivation to try a 
mathematical approach. They found in their interviews that “confidence in mathematical ability and 
in mathematical solutions are the main motivators for engineers to use mathematics in their work” 
(p.384), and it also depends on the value given to curriculum mathematics in a company whether or 
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not a mathematical approach is followed (p. 385, 413 ff). They recognized an interesting difference 
between the view of mathematics at work and in education: “In engineering practice mathematics is 
used primarily as a tool to estimate and confirm multiple solutions to real problems while in 
engineering education mathematics is about deriving a unique and exact solution to theoretical 
problems from first principles.” (p. 390, 422). It might be questionable, though, to which extent this 
description of mathematics education is really valid and not just the interpretation of former 
experience by the interviewed engineers.  

Reasoning mathematically: Understanding a mathematical argumentation as well as setting up an own 
mathematical argumentation. 

As opposed to what is familiar as reasoning in mathematics as a science where theory is built upon 
axioms and structures of assertions deducted from them by proof, the mathematical reasoning in 
engineering practice is rather ‘fragmented’, taking (tacitly) certain assertions/properties as given and 
arguing based on those. This was found in (Alpers, 2012a) where students working on realistic tasks 
argued why a certain boundary curve of a cam disk should be part of a circle or why the acceleration 
function as derivative of the velocity function should not oscillate erratically when the velocity function 
did not. Mathematical reasoning was also found regarding the influence of parameters on other 
quantities when one has to dimension machine elements in order to have a certain effect on the 
maximum stress they can bear. Reasoning is mostly combined with application meaning: a place where 
a part under load is fixed should have higher stress around it (Alpers 2012a). So, mathematical and 
application reasoning are strongly connected, using qualitative application rules (like put more 
material at places with higher stress values) which are based on calculations in simple models but 
might have become disconnected after a while.  Romo Vasquez (2009) and Hochmuth et al. (2014) use 
the Anthropological Theory of Didactics to identify different praxeologies in mathematics and 
application subjects but have not yet extended this to engineering practice. Goold & Devitt (2012) 
identified in their interviews “logical thinking” as one constituent of “mathematical thinking” but this 
is not further elaborated.  

Posing and solving mathematical problems: Formulating a question as a mathematical problem and 
using problem solving methods and strategies. 

What constitutes a mathematical problem is not well-defined and probably depends on the capabilities 
of the person who should solve it. Using routine procedures for standard problems was observed by 
Gainsburg (2007) and Alpers (2012a) where textbook algorithms were used to dimension machine 
elements. In (Alpers, 2012a) problem solving in geometric design work appeared to be more 
challenging: Given certain geometric operations, how to proceed to create the imagined desired shape 
of a machine part. One strategy here was to start with a comprehending block and remove parts 
successively. Since this is done using CAD technology this might be considered as an aspect of techno-
mathematical literacy since technology affords specific working styles of trial and error. V.d. Wal et al. 
(2017) correspondingly stated “technical creativity” as one aspect of techno-mathematical literacy 
they identified based on their interviews. In (Cardella & Atman 2005b) two problem solving strategies 
were recognised: “guess and verify” and “separate larger problems into smaller ones”. In (Alpers 
2012a) I identified in design work the strategy to start with an initial design (often based on rough 
models) and iterate meaningfully by using qualitative knowledge. As already stated in the previous 
section, the adequate way of problem solving might depend on the situation: in ‘special machinery’ 
work one wants to create quickly a feasible and acceptable design which might be sub-optimal, 
whereas in ‘serial production’ there is an incentive to go much further into optimization in order to 
exploit the ‘final 5%’ in potential. Goold & Devitt (2012, p. 387) also mention speed of response as 
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important criterion stated by engineers in interviews. In general, they identified “problem solving” as 
essential part of “mathematical thinking” but this is not further specified and elaborated. 

Modelling mathematically: Understanding, working and solving problems within models set up by 
others as well as performing active modelling. 

This competency has been elaborated in more detail by specifying the so-called modelling cycle which 
models the modelling process and gives rise to the following sub-competencies (cf. Kaiser & Brand, 
2015): understanding the situation and problem; setting up a real model by structuring, making 
assumptions and simplifications; setting up a mathematical model (mathematising); working 
mathematically; interpreting the results; validating the results; exposing the results to interested 
parties; planning and monitoring the overall process called “overall modelling competency” in (Kaiser 
& Brand 2015). All of these sub-competencies have been identified in the research literature. Goold & 
Devitt (2012, p. 390) cite an engineer stating that the engineer’s role is “to frame the problem correctly 
and maybe express it in maths, then they have to solve it and then they have to interpret the solution 
and communicate that to the decision maker”.  

In more detail, (Gainsburg 2006, 2007a) found that “understanding the phenomenon” was a major 
effort in the engineering work she observed. In the interviews conducted by Goold & Devitt (2012, p. 
410) an engineer stated: “engineering should be about trying to identify the right question, because a 
lot of times, people are obsessing over the wrong question”. 

Regarding setting up a real model Gainsburg (2005) observed both the creation of new models and 
choosing among existing ones. Observing students working on realistic tasks I identified modelling 
activities using well-known modelling quantities and principles as major activity (Alpers, 2010a). Both 
Cardella and Gainsburg emphasise the importance of estimation and dealing with uncertainty which 
comes up when one makes assumptions and simplifications. 

Since the real world models are already stated in mathematical terms (e.g. statics models consisting of 
equilibrium equations) the mathematisation is essentially already performed when setting up real 
models. Working mathematically includes standard as well as more challenging problem solving which 
was already described above.   

Regarding the importance of interpretation Goold & Devitt (2012) found that “Engineers say that 
engineering problems have multiple answers and that their job is to determine “what the answer 
means”, which is “the best answer for all participants” and what “is the knock on effect” of the answer” 
(p. 409). V.d.Wal et al. (2017) identified having a “sense of number” as aspect of techno-mathematical 
literacy which is also related to interpretation. Even when engineers work mathematically, the 
concepts remain embedded in applications, so application meaning never vanishes.  

Regarding validation v.d.Wal et al. (2017) identified a “Sense of error” as aspect of techno-
mathematical literacy meaning that an engineer should be able to “check and verify data and detect 
errors” but this does not provide information on how this can be done.  In my own studies (Alpers 
2010a) I found that building up expectations based on basic models and mathematical properties 
helped engineering students working on realistic tasks to detect questionable results and tool output. 
Cardella (2010) observed discrepancies between (model-based) simulation and measurements as a 
source for thinking about validity. Such situations where inexplicable results show up have been called 
“breakdown situations” (Noss et al., 2000) and they often require to go deeper into the modelling 
process and to look behind interfaces in order to be able to explain the results. But it is not just 
mathematical arguments playing a role in such a situation. Gainsburg (2007) reports that engineers 
retained a not well-applicable but otherwise well-accepted standard model because this would make 
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it easier to justify their decisions. Goold and Devitt (2012) emphasise that engineers have to take into 
account “real world practicability”.   

Exposition includes justification and communication of results often in order to arrive at a consensus.  
This will be taken up when dealing with the communication competency.  

Regarding the “Overall modelling competency” Gainsburg (2006, 2007a) identified “keeping track” as 
a major challenge. Cardella & Atman (2005a, b) observed planning and monitoring as aspect of 
“mathematical thinking”. In my own studies based on communications with an engineering colleague 
I recognized that engineers have to take into account many surrounding aspects (costs, availability of 
parts, logistics, possibility to produce and mount a part).  Goold and Devitt (2012, p.409) cite the phrase 
“bigger picture thinking” in this respect.  

Representing mathematical entities: Choosing adequate representations and switching between 
representations in order to use the most suitable one for a problem. 

Interpreting data and graphical representations is called “data literacy” by v.d.Wal et al. (2017) which 
was identified as aspect of techno-mathematical literacy. Technology plays a role when it comes to 
changing representations e.g. when turning a value table into a graph using a spreadsheet program in 
order to better recognise developments. V. d. Wal et al. (2017) also consider the ability to understand 
technical drawings as important component of TmL. In my own studies (Alpers 2010a) I investigated 
the representations provided at software user interfaces since these are the boundary objects 
between user and technology. Most often the representations were graphical ones with properties for 
which data had to be specified.  

Handling mathematical symbols and formalism: Understanding symbolic expressions and formal 
language used by others as well as setting up own ones. 

In my studies it was quite evident that CAD programme designers avoided symbolic (algebraic) 
expressions whenever possible and used geometric objects, properties and operations. On the other 
hand, when students used machine element dimensioning software they made computations by hand 
in small models in order to validate their results such that they not end up being a ‘slave’ of the tool. 
For this they used formulae and algorithms presented in wide-spread textbooks on machine elements. 
Moreover, the user has to transform output from one part of the programme into input for another 
one requiring computations by hand. In motion design tasks like the one my students worked on one 
can use a guideline of the German Association of Engineers which is full of symbolic representations 
of functions mostly put into a normal form on the interval [0,1]. Cardella & Atman (2005a,b) observe 
the use of formulae in Excel and symbolic computation within models.   

Communicating in, with, and about mathematics: Understanding oral and written mathematical 
statements made by others and expressing oneself mathematically. 

Goold & Devitt (2012) emphasise the importance to communicate solutions gained using mathematical 
methods, in particular the communication with non-experts (p. 388: “… putting the mathematics “into 
a form that a non-engineer will understand””). They identified different forms of communication:  

“Engineers communicate mathematics when: expressing engineering concepts; expressing 
conclusions; writing reports; making arguments; explaining how “you have come to your conclusion”; 
justifying some decisions; rolling out IT solutions; reading reports; verifying consultants’ work; 
communicating a concept to a decision-maker; asking finance people to provide money; and selling 
products.” (p. 434). 
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Similarly, v.d. Wal et al. (2017) identified “Technical communication skills” as another aspect of techno-
mathematical literacy. Gainsburg (2013) also states that engineers have to explain and justify their 
decisions. In my own studies I also found the requirement of communication between different 
engineering departments, e.g. measurement and computation or design and computation (Alpers 
2010a). It is important to identify the boundary objects at these interfaces. In case of mechanical 
engineering, measurement and computation departments have to share a common application model 
for strain, stress and loads. For being able to communicate meaningfully an engineer must have an 
idea about the interfaces in order to make statements the communication partner is able to 
understand.  

Making use of aids and tools: Recognising when the usage of aids and tools is adequate as well as using 
them adequately. 

There is no doubt about the great influence of technology on engineering work since software 
programmes can be found at any engineering workplace. Therefore, v.d. Wal et al. (2017) found in 
their interviews that “software skills” were the most frequently encountered aspect of TmL. They 
found “white box”, “grey box” and “black box” usages of software. Users have to at least understand 
the mathematical objects at the interface (boundary objects) but always in connection with application 
meaning. Understanding the underlying model is important for meaningful and efficient variation (e.g. 
machine elements, cf. Alpers, 2010a) or in breakdown situations; sometimes “understanding through 
use” (Kent & Noss, 2002; Alpers, 2006) might already be sufficient. If the software does not work as 
expected it is also important to be able to find workarounds (Alpers 2010a). Alpers (2010a), v.d. Wal 
et al. (2017) and Goold & Devitt (2012) emphasise the ability to verify and interpret output from 
software programmes since there might be a wrong understanding of both required input and 
delivered output. An engineer interviewed by Goold & Devitt states: “the engineer should understand 
how the program is solving the equations and what it is doing, because it is always dangerous not to’” 
(p. 411). 
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5. Drawing conclusions for educational practice 
From their study Goold & Devitt (2012) draw the following conclusion: “The key message for 
engineering education is that building a mathematics curriculum that more closely represents the way 
mathematics is used in engineering practice will strengthen it.” (p. 448). Regarding engineering 
education in general they state: “The findings in this study suggest that engaging in active or social 
learning environments that emulate engineering practice would benefit engineering education.” (p. 
449). But one has to keep in mind that the goals of the mathematical education of engineers are 
twofold:  

• to enable students to work with the mathematical concepts, models and procedures used in 
the application subjects of the study course 

• to enable students to work mathematically in later workplace environments. 

For achieving the first goal the mathematical education should be strongly integrated in the respective 
engineering study course (see Alpers et al., 2013, p. 61-65, as well as Alpers 2020, for different aspects 
of integration). The mathematical work at later workplaces is strongly embedded in application 
contexts and problems and the mathematical concepts and procedures are often to a large extent 
hidden in software tools. Nonetheless, the available studies have shown that aspects of mathematical 
thinking (according to Schoenfeld, 1992) or mathematical competence (according to Niss, 2003) or 
techno-mathematical literacies (according to v.d. Wal et al. 2017) are required and should hence be 
addressed in the mathematical education of engineers. There are a few proposals for doing this in 
Cardella (2008), Alpers (2002, 2014a, b, 2015), Christensen (2008), and v.d. Wal et al. (2019). A 
“minimally invasive” and quite restricted attempt would be the inclusion of “authentic” tasks (possibly 
with a slight didactical reduction) in weekly assignment sheets (see Alpers, 2015 for an example 
concerning motion design). A more comprehensive approach includes group projects in mathematics 
education where students can gain experience on relevant aspects of mathematical thinking. This is 
most consequently applied in the “problem-based learning” approach to education (see Christensen, 
2008). Cardella (2008, p. 157) recommends the use of ‘model eliciting activities’ which “are open-
ended, real-world, client-driven problems based on the models and modelling perspective”. Below, we 
state some project-based learning activities that are suitable for addressing aspects of mathematical 
thinking: 

• Mathematical application projects as described in (Alpers, 2002, 2015) can be used to let 
students “understand, judge, do and use mathematics” (Niss, 2003) in relevant application 
contexts. The motion design problems described in (Alpers, 2015) occur in real engineering 
work, e.g. in the packaging machine industry. In such projects one can let students retrieve 
realistic data from data sheets available on the internet (on capabilities of machines like 
maximum acceleration of a motor) and do experiments in order to compare models with real 
data and thus validate models. Such projects might include the whole modeling cycle or work 
in already existing models. Students can learn how to deal with uncertainty and experience 
the necessity for estimation. 

• In such projects students can also experience real practices like the iterative working style of 
many engineers (start with a rough initial design making educated guesses or using rough 
models; perform iteration cycles by changing variables in order to come to a “good” design). 
This kind of “mathematical practice” (Cardella, 2008) is often not included in mathematics 
education but important for real engineering work. 

• One can also include the usage of tools that can be found at real engineering workplaces like 
Computer Aided Design (CAD) programmes or machine element dimensioning programmes 
which are available at universities for educational purposes. Students then see what they still 
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need to know mathematically when they use such programmes even if most of the 
mathematical models are ‘buried in code’. One can let them for example construct a 
parameterized design for a notch such that the geometric measures can be varied easily. For 
this one needs a design using geometric relationships which are preserved on variation (see 
e.g. Alpers, 2006). They can also implement an algorithm for dimensioning a certain machine 
element like a shaft or a spring and compare their results with professional machine element 
dimensioning programmes.  

• In projects students can also experience the openness of real design work where there is not 
‘one correct answer’ but an abundance of different solutions. In (Alpers, 2015) I show that 
motion design problems are particularly suitable for encountering such a situation when 
working mathematically. 

• In projects students have to manage their resources (ask experts, plan work, get data, sub-
divide the task, delegate sub-tasks to team members, use software etc.). They also learn to 
communicate mathematical concepts and practices to their team members and to other 
students in project presentations.  

Van der Wal et al. (2019) investigate teaching strategies for fostering techno-mathematical literacies. 
In their design research study, they set up an applied mathematics course for life science students 
where the students had to work on three “cases” related to their field of study. After working on their 
own, there was a feedback session where groups presented their results and the lecturer applied a 
questioning approach based on inquiry-based learning. An analysis of this approach revealed that the 
lecturer fostered the acquisition of techno-mathematical literacies by several strategies including 
asking “students deeper questions about data, tables, formulas, and figures”, asking “students to 
elaborate on the answer”, and letting “students discover their mistake by stimulating thinking about 
the logical answer”. They conclude that the “feedback hours, with their classroom discussions, and 
usage of IBL questions, seem to contribute to the learning of TmL”. (v.d. Wal et al. 2019, no page 
numbers). 

Regarding the affective dimension of learning, it is the goal for the students to develop a certain degree 
of consciousness of what they can do (and when they should ask an expert), a critical appreciation of 
the role of mathematics in engineering tasks (called “skeptical reverence” in Gainsburg, 2007), and a 
readiness to apply a mathematical approach (either by doing mathematics themselves or in coopera-
tion with an expert). 

Finishing this section, one ‘caveat’ should be stated explicitly. One should not expect university 
education to deliver ‘full grown’ engineers. As Gainsburg (2013) recognized in her study on the 
development of modeling competence from students to novices (recent graduates) to veterans, many 
aspects of this competence seem to develop over years of experience and work in many projects. 
Goold & Devitt (2012, p. 390) concluded from their interviews that “an ability to do engineering work 
comes from the “experience of working in an engineering environment” watching other engineers 
estimate, work out real problems and how they view “the bigger picture””. There also might be a 
development from a larger use of curriculum mathematics to a less one when advancing to 
management positions (Kent & Noss, 2002; Goold & Devitt, 2012). University education can provide 
opportunities to experience the different aspects and to induce meta-cognitive thoughts about the 
processes involved but it cannot anticipate years of experience in real engineering projects.  
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6. Summary and outlook 
Compared to the state-of-the-art volume edited by Bessot & Ridgway in 2000 remarkable progress has 
been made in the still ‘niche’ area of engineering workplace mathematics. There are now a few studies 
concerning engineering workplaces using predominantly qualitative research methods where 
interviews play a major role. Capturing mathematics usage at engineering workplaces is not easy 
because different qualifications are needed. Therefore, interdisciplinary approaches including 
mathematics educators, engineers and educational researchers are most promising. A further problem 
is that there is hardly “the” engineer but there is a range of branches and job profiles with different 
requirements. But several results in different studies point in the same direction. In this contribution I 
structured the results using the framework of mathematical competencies in order to facilitate to draw 
educational conclusions. Some ideas for doing the latter are also presented but sometimes research 
results are too general (like “software skills”) making it impossible to draw concrete conclusions.  

From the findings stated above, it is clear that much more research is required to better cover the 
breadth of branches and job profiles in engineering. For being able to set up corresponding educational 
profiles a further investigation of boundary objects at different interfaces would be helpful, e.g. 
between sales engineers and customers or between different departments in companies: design and 
computation (a design department giving a task to a computational one and interpreting and 
discussing the results). Also a further look at the boundary objects at technological interfaces is 
required to better understand which models a user is still required to know to work effectively and 
efficiently with tools. Another route of research would be to conduct longitudinal studies on 
competence development over time as suggested by Gainsburg (2013). This could help to specify a 
reasonable split of responsibility between mathematics education, application education and informal 
lifelong learning at work. 
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