
41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

Why integrate computational thinking into a 21st century
engineering curriculum?

C. Mohtadi1
MathWorks Ltd, Cambridge, UK

coorous.mohtadi@mathworks.co.uk

M. Kim1, J. Schlosser
MathWorks GmbH, Ismaning, Germany

<mischa.kim, joachim.schlosser>@mathworks.de

Conference Key Areas: Curriculum development, Education concepts specific for
engineering education, Industry and engineering education

Keywords: Integrated Curriculum, Simulation, Project-Based Learning, Tools

INTRODUCTION

Engineering educators today are facing a number of challenges [1]. Students entering
engineering courses are less skilled in science, technology, engineering, and mathematics
(STEM) subjects [2] despite being brought up in an environment with all forms of
computational and electronic devices. A key challenge faced by engineering educators is to
prepare students with the necessary skills and knowledge to work in multidisciplinary design
teams upon graduation, solving complex problems using computational tools.

To foster such a transformation, university courses need to integrate computational thinking
[3] into all aspects of the engineering science curriculum. Computational thinking skills
include reformulating seemingly difficult problems, reduction, embedding, transformation and
simulation in conjunction with abstraction, and decomposition in tackling a large complex
task. The experiences of a number of leading academic institutions demonstrate that when
this is done systematically, students quickly learn mathematical concepts early on using
symbolic and numeric software tools. Further, the students acquire a deeper understanding
of programming and systems engineering with hands-on project-based learning linked with
real hardware. Students also learn to think independently, investigate and explore
environments, and apply tools used by practicing engineers.

Programming and numerical simulation platforms such as MATLAB® and Simulink® can act
as catalysts to bring about the transition from traditional engineering courses to modern
courses in which the requirements of engineering analysis as defined by accreditation bodies
(e.g. Engineering Councils, EUR-ACE®) are met. Such platforms enable the integration of
computational thinking and tools to promote a deeper understanding of engineering
principles through spiral curricula. They also support the use of simple “Apps” to bring
concepts to life before encouraging and empowering students to develop their own. By
helping generate excitement, establish purpose early, and introduce skills that are reinforced
later, the integration of computational thinking serves to engage students at progressively
higher levels, enhance learning, and increase retention.

This paper explores these themes through a number of case studies from universities around
the world, sharing some of their practices and key outcomes. Effective and counterproductive

1 Corresponding Author
Coorous Mohtadi, coorous.mohtadi@mathworks.co.uk, Mischa Kim, mischa.kim@mathworks.de

mailto:coorous.mohtadi@mathworks.co.uk
mailto:mischa.kim@mathworks.de

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

patterns of using computational tools are discussed. Today’s engineers need to find solutions
for great challenges and computational thinking a key prerequisite.

1 ENGINEERING EDUCATION CHALLENGES
Much of engineering education requires a sound basis of mathematics as well as practical
understanding and insight. Many recent changes in secondary education resulted in a
perceived drop in the underlying skills and knowledge of the students in such areas as higher
level mathematics and programming skills. This, combined with students coming from a
larger geographical distribution, results in a much less uniform initial skill set among students
in a course [2].

A second challenge is tied to the increased complexity of engineering systems (and systems
of systems) that newly qualified engineers will be expected to analyse, design, and test in
their career. It is no longer adequate merely to have an understanding of the underlying
principles. A graduating engineer now must have a much deeper working knowledge of the
processes involved in designing these complex systems.

Addressing the growing gap between the uneven skills of incoming students and higher
expectations of graduating students within the limited duration of typical engineering courses
is an increasingly difficult challenge for institutions of higher education.

1.1 Students’ variable STEM skill set
A recent report from the House of Lords, Select Committee on Science and Technology on
Higher Education in Science, Technology, Engineering and Mathematics (STEM) subjects [2]
highlighted the skills gap that universities are seeing. It states, “In 2006, the Royal Society
argued that the gap between the mathematical skills of students when they entered HE and
the mathematical skills needed for STEM first degrees was a problem which had become
acute. Two reasons were suggested to explain the gap: first, lack of fluency in basic
mathematical skills; and, secondly, the fact that some A level syllabuses allowed topics to be
excluded which were relevant to some first degree courses. The evidence we received
suggested that the problem remains.

In addition to the skills gap at the school-HEI interface, we also received evidence that
graduates were often found to lack the numeracy skills needed to succeed in the workplace,
an issue confirmed by employer surveys conducted by the CBI which identified a shortage of
students with adequate maths skills.”

1.2 Complexity and interdisciplinary design
Complexity is an inherent part of most engineering disciplines. Moreover, the increase in
complexity and the interdisciplinary nature of engineering education go hand in hand. Two
key recommendations from the National Academy of Engineering for educating the engineer
of 2020 [4] are:

• Whatever other creative approaches are taken in the four-year engineering
curriculum, the essence of engineering–the iterative process of designing, predicting
performance, building, and testing–should be taught from the earliest stages of the
curriculum, including the first year.

• Engineering schools should introduce interdisciplinary learning in the undergraduate
environment, rather than having it as an exclusive feature of graduate programs.

An associated challenge is inclusion of computational thinking early on in the design process.
Computational thinking skills include reformulating seemingly difficult problems, reduction,
embedding, transformation and simulation in conjunction with abstraction, and decomposition
in tackling a large complex task. These skills are indispensible in modern engineering
practice. The design of the various systems in a passenger aircraft [6] provides an illustrative
example. Fuel systems in modern aircraft are substantially more complex than those two
decades ago. Computational thinking underpins the design of complex systems by enabling

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

teams to validate requirements early, communicate the functional specification to suppliers,
and complement written requirements in conformance with appropriate standards.
Computational models can be reused to create desktop simulators, commission hardware-in-
the-loop test rigs, run a virtual integration bench, and demonstrate system functionality to
customers.

1.3 Accreditation
A major challenge in designing engineering courses is satisfying national and international
accreditation bodies such as UK Engineering Council and European Network for
Accreditation of Engineering Education (ENAEE). EUR-ACE® [5] covers six areas:
Knowledge and Understanding, Engineering Analysis, Engineering Design, Investigation,
Engineering Practice, and Transferable skills. In most of the above categories, computational
thinking will enhance an engineer’s capacity and capability. Moreover, mathematical
analysis, and computational modelling should be integrated into Engineering Analysis:
“Graduates should be able to use a variety of methods, including mathematical analysis,
computational modelling, or practical experiments … [graduate should have] the ability to use
their knowledge and understanding to conceptualise engineering models, systems and
processes”.[5]

2 COMPUTING INTEGRATED INTO THE CURRICULUM
Integration of computing into the engineering curriculum is not a new idea [7]. However, in
the past, the complexity and unsuitability of the software tools for first year engineering
students was a fundamental barrier. The following sections present examples that illustrate
the advantages of integrating computing into curricula.

2.1 Symbolic tools to teach mathematics and elementary programming
In many universities mathematics faculty members teach the concepts to engineers and
scientists alike. Moreover, maths is one of the key subjects in teaching engineering. One way
to foster students’ early adoption of software tools is in using the tools to teach
mathematics[8]. Symbolic tools are used to reinforce the mathematical concepts and to
encourage independent learning. Symbolic computer algebra software packages such as the
MuPAD® notebook provide a smooth progression from pencil and paper to computer-based
tools using the same notation.

As an example, a first-year course in exploring mathematical and engineering concepts with
appropriate software tools provides students with an early introduction to self-directed
learning while building foundational knowledge they will need in their other math and science
courses. Taught using MATLAB and Symbolic Math Toolbox™ with its MuPAD® notebook
interface, a typical two-term course introduces students to the use of symbolic computation in
modern mathematics. The course director feels all maths undergraduates must have
experience using a computer algebra system, regardless of what branch of maths they might
specialize in. An immediate benefit of taking this course in the first year is that students can
use the software to solve problems and check their answers in other courses. Another
advantage is that the students not familiar with numerical computation can start from familiar
grounds of symbolic manipulation. In the longer term, exposure to software tools is beneficial
for students in their third- and fourth-year projects, in their postgraduate research, and as a
skill to highlight on their resumes.

Another university uses the MuPAD notebook to teach electrical engineering principles. Here
the MuPAD notebook is used to convey such concepts as Fourier series, Taylor expansion,
vector products, ordinary differential equations, and RLC circuits [9].

2.2 Software tools to help implement a CDIO™ based programme
CDIO™ (Conceive, Design, Implement, and Operate) is a student-centric methodology
designed to deepen and widen engineering students’ understanding through a series of well-
conceived design exercises.

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

In an introductory mechanical engineering course [10], first-year students learn the basics of
computation. Working in MATLAB, they define a set of equations that describe an
engineering problem, solve the equations, and interpret the results by generating plots and
graphs. In upper-level courses, students build upon the skills and techniques they have
acquired, using the same software environments to complete increasingly complex
assignments.

In a mechatronics course [10], for example, students use Simulink® and Stateflow® in the
design phase to model and simulate a robot controller that controls multiple motors based on
a variety of sensor inputs. In the implementation phase, the students generate code from
their models using Embedded Coder® and deploy the code to an embedded target for
hardware-in-the-loop simulations and real-time testing.

Students go on to use MATLAB and Simulink to complete engineering capstone projects in
which they apply the theory that they have learned to design, build, and operate a production
system.

2.3 Model-Based Design, problem-based learning, and industry collaboration
One challenge for instructors lies in helping students move rapidly from learning a theory to
applying it. Often, university students learn a great deal about maths and algorithms without
acquiring an appreciation for what it takes to put that knowledge into practice—for example
making an algorithm fly in a real aircraft. Closing this gap is needed to produce graduates
who are outstanding candidates for partner companies or for internal research teams.

The solution consists of complementing lectures with interactive demonstrations and tutorial-
based simulators. The students employ software tools and basic programming skills to
determine steady-state conditions and use trim routines. They use simulation tools when no
simple analytical closed-form solutions exist. Later, they build models and deploy code to use
with quadcopters for in-lab flight tests. [11]

2.4 Motivation and making mathematics real
A number of universities use project-based learning with hardware such as LEGO®
Mindstorms® NXT [12], Arduino®, Raspberry Pi®, or Beagleboard® to motivate students,
encourage their creativity, and present them with real engineering challenges [13].

The biggest barrier in using such hardware with first- and second-year students is that the
hardware typically requires programming embedded systems using low-level tools. With
higher-level tools, students move smoothly from the design and simulation environment to
embedded systems without having to learn the intricacies of such devices. These details can
be part of follow-on projects to complement the fundamentals acquired on the first project.
With this approach, students can draw upon their mathematical modelling and analysis skills,
learn how to structure algorithms and solutions in computer programs, and solve problems
by computational thinking before getting into the details of low-level software tools and
compilers. In addition, the students follow processes similar to those widely employed in
industry.

2.5 Spiral curriculum, scaffolding theory, and engineering curriculum
With a spiral curriculum, students start with authentic design, build, and test tasks early in the
first year. Instead of focusing for relatively long periods on specific narrow topics, a spiral
curriculum exposes students to a wide variety of ideas repeatedly. Each time, the skills and
depth of understanding reach a new level. Instructors encourage students to go beyond their
usual comfort zone and stretch their abilities.

For example, students will learn basic concepts with mathematical modelling in the first year
and revisit these concepts in greater depth in subsequent years.

As an example, educators can use simple “Apps” [14] to convey various educational
concepts. Students originally use the “App” to learn about a concept, such as the solution to

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

a differential equation. Subsequently they learn to extend the App to compute the solution
using alternative methods, and finally they develop Apps of their own, which they can add to
the library.

2.6 Using an integrated tool suite as a multipurpose, pedagogical, Swiss army knife
One approach of using MATLAB and Simulink in an integrated engineering curriculum is
shown in Fig. 1. Rather than starting in the first year of study with abstract programming
constructs, students are introduced to computing via simulation, and experience engineering
concepts directly using hardware platforms such as LEGO® Mindstorms® NXT. This
introduction fosters retention and helps bridge the knowledge gap in mathematical and
engineering topics that are typically covered in later semesters. Programming skills are then
honed in the early semesters in math and physics courses, which serve as prerequisites to
enter the engineering sequence. As the students’ comfort level in programming rises and the
complexity of engineering problems increases, the computing component is extended to
include a simulation platform such as Simulink. Engineering curricula typically culminate in a
series of applied lab-based courses in which students are encouraged to demonstrate the
problem solving skills they have acquired with full-blown, real-world hardware projects.

Fig. 1 An example integrated engineering curriculum using MathWorks tools and hardware

3 GOOD PRACTICES IN DESIGNING ENGINEERING CURRICULA
The primary aim of using computational techniques in teaching is to reinforce learning of key
engineering concepts. However, tool competency can become a barrier in developing the
concepts when using new software environments. With this in mind, it is important to follow a
number of good practices that ultimately lead to higher levels of understanding.

Some typical problems with using software tools in education are:

• Expecting first year undergraduate engineers to motivate themselves to learn the
software tools by themselves

• Teaching the tools in the first year but not asking students to use them until they
encounter their projects in their third years or later

• Not using the tools in the context they are used in industry.

Many institutions have made significant strides in the use of software tools and new
technology in their courses, lab assignments, and student projects. This section highlights
some of the best practices from those institutions.

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

3.1 Good Practice 1: Reuse the same technology in multiple courses via scaffolding
Within one engineering department, multiple faculty members coordinate the efficient reuse
of the same technology and related concepts across multiple courses in multiple terms and
years as illustrated in Fig. 1. This can be implemented in both graduate and undergraduate
programs. Through this scaffolding, students better understand the value of learning and
applying software, and can reuse what they learned previously to expand their use of the
technology for problem solving in other courses.

Moreover, course instructors and teaching assistants can use instructional resources made
available by technology providers. When such resources are available, teachers do not have
to develop all instructional materials themselves, and students do not have to learn the
software tools entirely on their own [16].

3.2 Good Practice 2: Establish a solid foundation for first year students with tools
they will reuse

Another good practice is for the faculty members to agree to give all first-year students a
solid foundation to build upon by teaching a common Introduction to Engineering type
course, oriented toward problem-solving and including software tools that will be widely
reused in subsequent courses. The success of approaches like this can be found in many
universities, for example see [15].

3.3 Good Practice 3: Coordinate tool use throughout an entire department’s
curriculum

Students learn at different rates and using different approaches. However, repetition is a
powerful method of reinforcing concepts. It is a good practice to ensure that at least one
course every semester or term is taught using the same software tools for technical
computing and/or simulation. Under this approach, students’ proficiency with these tools
does not atrophy during semesters of no use, but rather grows stronger through
reinforcement and scaffolding. As a result, instructors in higher-level courses in the third year
and beyond can cover more concepts at a deeper level and can introduce students to Model-
Based Design techniques used in industry.

3.4 Good Practice 4: Integrate tools thoroughly throughout curricula for all applicable
departments

Thought leadership and high-level support from multiple engineering department heads and
the dean of engineering enables the implementation of a coordinated, integrated curriculum
across multiple engineering departments, and potentially math and science departments as
well.

MATLAB integration throughout the entire engineering curriculum enables a holistic teaching-
and-learning approach that attracts students, engages them, and helps them readily transfer
skills within their coursework and beyond, into industry [16].

4 CONCLUSIONS
Most students today are comfortable using computers as they begin their studies, but few are
comfortable applying them to solve engineering problems. To close this gap, computational
thinking and the development of associated skills must be integrated throughout the
engineering curriculum. Examples of this integration are cited here and a number of practices
for achieving optimal results are included.

While the mathematical foundation for engineering education is relatively stable, the
complexity and multidisciplinary nature of engineering problems today requires engineering
programs to satisfy multiple learning goals at the same time. The ability to use software tools
is not only a requirement for today’s engineers, it also a solution that enables students to put
the theory they have learned into practical use on real systems. Experience with a variety of

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

tools can help students broaden their horizons, but this benefit must be weighed against the
ability to explore engineering concepts in greater depth by using—and gaining experience
with—the same tool environment in each year of their studies. Instructors worldwide have
found that using the same set of software tools from the first year through graduate studies
enhances the learning experience—particularly when those same tools are used by
practicing engineers working on real-world problems in industry.

5 ACKNOWLEDGMENTS
The authors wish to thank T. Gaudette and J. Tung for their review of the text.

REFERENCES

[1] Mills, J.E., Treagust, D.F., (2003), Engineering Education – Is problem-based or
project-based learning the answer?, Australian Journal of Engineering Education, on-
line publication, http://www.aaee.com.au/journal/2003/mills_treagust03.pdf.

[2] House of Lords, Select Committee on Science and Technology (2012), Higher

Education in Science, technology, Engineering and Mathematics (STEM) subjects,
2nd report of session 2012-2013.
http://www.publications.parliament.uk/pa/ld201213/ldselect/ldsctech/37/37.pdf

[3] Wing, J., (2006), Computational Thinking, Communications of the ACM, Vol. 49,

No.3, pp. 33-35.

[4] National Academy of Engineering, (2005), Educating the Engineer of 2020: Adapting
Engineering Education to the New Century, National Academies Press, Washington
D.C.

[5] ENAEE Administrative Council, EUR-ACE, (2008), Framework Standards for the
Accreditation of Engineering Programmes,
http://www.enaee.eu/eur-ace-system/eur-ace-framework-standards

[6] MathWorks, (2012), Airbus develops fuel management system for the A380 using
Model-Based Design, http://www.mathworks.co.uk/company/user_stories/Airbus-
Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-
Design.html?by=company

[7] Edgar, T., (2004), Computing Through the Curriculum: An Integrated Approach for
Engineering, Proceedings of ASEE, Salt Lake City, Utah.

 [8] MathWorks, (2012), Mathematic undergraduate students at the University of Oxford
use MATLAB for symbolic computation and problem solving,
http://www.mathworks.co.uk/company/user_stories/Mathematics-Undergraduate-
Students-at-the-University-of-Oxford-Use-MATLAB-for-Symbolic-Computation-and-
Problem-Solving.html

[9] Brown, M., Steele, C., (2013), MathExplorer: Exploring UG Engineering Maths Using
MuPAD, MATLAB Virtual Conference 2013.

[10] MathWorks, (2012), KTH Royal Institute of Technology’s CDIO Program Improves
Retention Rates and Turns Students into Engineers,
http://www.mathworks.co.uk/company/user_stories/KTH-Royal-Institute-of-
Technologys-CDIO-Program-Improves-Retention-Rates-and-Turns-Students-into-
Engineers.html

[11] MathWorks, (2011), Technische Universität München Uses Model-Based Design to

http://www.aaee.com.au/journal/2003/mills_treagust03.pdf
http://www.publications.parliament.uk/pa/ld201213/ldselect/ldsctech/37/37.pdf
http://www.enaee.eu/eur-ace-system/eur-ace-framework-standards
http://www.mathworks.co.uk/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html?by=company
http://www.mathworks.co.uk/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html?by=company
http://www.mathworks.co.uk/company/user_stories/Airbus-Develops-Fuel-Management-System-for-the-A380-Using-Model-Based-Design.html?by=company
http://www.mathworks.co.uk/company/user_stories/Mathematics-Undergraduate-Students-at-the-University-of-Oxford-Use-MATLAB-for-Symbolic-Computation-and-Problem-Solving.html
http://www.mathworks.co.uk/company/user_stories/Mathematics-Undergraduate-Students-at-the-University-of-Oxford-Use-MATLAB-for-Symbolic-Computation-and-Problem-Solving.html
http://www.mathworks.co.uk/company/user_stories/Mathematics-Undergraduate-Students-at-the-University-of-Oxford-Use-MATLAB-for-Symbolic-Computation-and-Problem-Solving.html
http://www.mathworks.co.uk/company/user_stories/KTH-Royal-Institute-of-Technologys-CDIO-Program-Improves-Retention-Rates-and-Turns-Students-into-Engineers.html
http://www.mathworks.co.uk/company/user_stories/KTH-Royal-Institute-of-Technologys-CDIO-Program-Improves-Retention-Rates-and-Turns-Students-into-Engineers.html
http://www.mathworks.co.uk/company/user_stories/KTH-Royal-Institute-of-Technologys-CDIO-Program-Improves-Retention-Rates-and-Turns-Students-into-Engineers.html

41st SEFI Conference, 16-20 September 2013, Leuven, Belgium

Drive Research, Problem-Based Learning, and Industry Collaboration,
http://www.mathworks.co.uk/company/user_stories/userstory57690.html

[12] Aach, T., (2013), MATLAB meets Mindstorms, Institute for imaging and computer
vision, RWTH Aachen, Publications web page,
http://mindstorms.lfb.rwth-aachen.de/index.php/en/publications

[13] MathWorks, (2013), Supported Hardware Resources,
http://www.mathworks.co.uk/academia/hardware-resources/

[14] MathWorks (2013), File Exchange,
http://www.mathworks.co.uk/matlabcentral/fileexchange

[15] MathWorks, (2011), Northeastern University’s High-Tech Tools and Toys Lab
Teaches Freshmen to Think Like Engineers,
http://www.mathworks.co.uk/company/user_stories/Northeastern-Universitys-High-
Tech-Tools-and-Toys-Lab-Teaches-Freshmen-to-Think-Like-Engineers.html

[16] MathWorks, (2011), Michigan State Integrates MATLAB into Engineering Curricula
to Foster Student Proficiency in Problem-Solving Using Computational Tools
http://www.mathworks.co.uk/company/user_stories/Michigan-State-Integrates-
MATLAB-into-Engineering-Curricula-to-Foster-Student-Proficiency-in-Problem-
Solving-Using-Computational-Tools.html

http://www.mathworks.co.uk/company/user_stories/userstory57690.html
http://mindstorms.lfb.rwth-aachen.de/index.php/en/publications
http://www.mathworks.co.uk/academia/hardware-resources/
http://www.mathworks.co.uk/matlabcentral/fileexchange
http://www.mathworks.co.uk/company/user_stories/Northeastern-Universitys-High-Tech-Tools-and-Toys-Lab-Teaches-Freshmen-to-Think-Like-Engineers.html
http://www.mathworks.co.uk/company/user_stories/Northeastern-Universitys-High-Tech-Tools-and-Toys-Lab-Teaches-Freshmen-to-Think-Like-Engineers.html
http://www.mathworks.co.uk/company/user_stories/Michigan-State-Integrates-MATLAB-into-Engineering-Curricula-to-Foster-Student-Proficiency-in-Problem-Solving-Using-Computational-Tools.html
http://www.mathworks.co.uk/company/user_stories/Michigan-State-Integrates-MATLAB-into-Engineering-Curricula-to-Foster-Student-Proficiency-in-Problem-Solving-Using-Computational-Tools.html
http://www.mathworks.co.uk/company/user_stories/Michigan-State-Integrates-MATLAB-into-Engineering-Curricula-to-Foster-Student-Proficiency-in-Problem-Solving-Using-Computational-Tools.html

	This paper explores these themes through a number of case studies from universities around the world, sharing some of their practices and key outcomes. Effective and counterproductive patterns of using computational tools are discussed. Today’s engineers need to find solutions for great challenges and computational thinking a key prerequisite.
	1 ENGINEERING EDUCATION CHALLENGES
	1.1 Students’ variable STEM skill set
	1.2 Complexity and interdisciplinary design
	1.3 Accreditation

	2 COMPUTING INTEGRATED INTO THE CURRICULUM
	2.1 Symbolic tools to teach mathematics and elementary programming
	2.2 Software tools to help implement a CDIO™ based programme
	2.3 Model-Based Design, problem-based learning, and industry collaboration
	2.4 Motivation and making mathematics real
	2.5 Spiral curriculum, scaffolding theory, and engineering curriculum
	2.6 Using an integrated tool suite as a multipurpose, pedagogical, Swiss army knife

	3 GOOD PRACTICES IN DESIGNING ENGINEERING CURRICULA
	3.1 Good Practice 1: Reuse the same technology in multiple courses via scaffolding
	3.2 Good Practice 2: Establish a solid foundation for first year students with tools they will reuse
	3.3 Good Practice 3: Coordinate tool use throughout an entire department’s curriculum
	3.4 Good Practice 4: Integrate tools thoroughly throughout curricula for all applicable departments

	4 CONCLUSIONS
	5 ACKNOWLEDGMENTS

