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INTRODUCTION

Systems for automatic assessment of exercises, such as Stack [1], only check the 
final answer and a pre-defined set of intermediate answers. The teacher must give 
the right answers to the tool. Intermediate answers require that the student solves the 
problem along the path that the teacher chose.

In this study we discuss the MathCheck tool [2] that supports a different philosophy. It 
has  been  designed  for  providing  feedback  to  the  students  when  they  work 
independently at home, not for assessing the solutions and keeping track of points. It 
inputs the whole symbolic calculation or reasoning by the student and checks its 
every step for mathematical correctness. MathCheck does not check that the student 
followed a particular path, found the right solution, nor even that the student solved 
the  right  problem.  It  only  checks  that  each  step  in  the  student's  reply  is 
mathematically correct. The student need not tell MathCheck what particular problem 
is  being  solved,  and  the  teacher  need  not  tell  the  right  solution.  This  makes 
MathCheck flexible and free from bureaucracy (and unable to deliver points). If the 
delivery of the solutions to the teacher is desired, the student can simply copy the 
answer from MathCheck and email it to the teacher.

We first motivate MathCheck with a simple example. Then we describe what parts of 
mathematics  MathCheck  can  deal  with.  Because  of  a  fundamental  phenomenon 
called undecidability, no computer mathematics system can be perfect. This issue 
and how it affects MathCheck are discussed next. Although the input language of 
MathCheck  is  not  much  different  from  the  input  languages  of  other  computer 
mathematics systems, big problems arose in our educational experiments. Therefore, 
we devote a section to  the input  method issue.  The next  section reports  on our 
teaching experiments.  Finally  we discuss ideas for  future work and conclude the 
study.
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MathCheck is at  http://www.math.tut.fi/mathcheck/. The reader is invited to try the 
examples  in  this  study  and  the  reader's  own  examples.  No  registration  or  user 
identification is needed. MathCheck keeps no record of who use it and what they do.

1 MOTIVATION

Consider a student solving a problem at home in the evening. The student has to 

simplify sin( π
2
+x )− sin( π

2
−x ) The student writes the following on paper:

sin( π
2
+x )− sin( π

2
−x )=cos x −cos (− x )=cos x+cos x=2cos x

The next day the student goes to a problem session and learns that this answer is  
wrong. The right answer is shown, but the student has no time to think about it,  
because the teacher moves to the next problem.

The next year MathCheck is in use. Another student arrives at the same solution. The 
student gives it to MathCheck as

sin(pi/2+x) ­ sin(pi/2­x) = cos x ­ cos(­x) =
cos x + cos x = 2 cos x

MathCheck replies as  is  shown in  Fig.  1.  The student  learns that  the  answer  is 
wrong. The student also learns the exact place where the reasoning went wrong.

Fig. 1. An example output by MathCheck

By looking at the red expression and the preceding expression, the student realizes 
that cos (−x ) is not −cos x . Perhaps it is cos x ? Checking from a book is old-
fashioned, so the student opens another MathCheck window and writes cos(­x) = 
cos x . MathCheck accepts it.

Then the  student  clicks  the  back  button  of  the  web  browser  window that  is  still 
showing  Fig.  1.  The web form that  contains the original  answer re-appears.  The 
student replaces the second line of the original answer by cos x ­ cos x = 0 
and clicks submit. MathCheck accepts this improved solution.

This example illustrates how MathCheck helps the student to improve the solution 
while still at home until it is free from simple errors. That is, the student can progress 
further at home. This often means progressing further in general, because students 
seldom continue with an exercise after its solution has been presented in a problem 
session.

Many students  on  our  courses  seem to  behave  as  if  the  important  thing  with  a  
mathematical exercise were to find the correct answer, instead of to learn a particular 

http://www.math.tut.fi/mathcheck/
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mathematical skill.  They guess the answer or get it  from, say, Wolfram Alpha [3], 
instead of reasoning it themselves. Systems that only check the final answer do not 
discourage this kind of behaviour. If the exercise cannot be solved without reasoning, 
the  performance  of  students  drops  dramatically.  Bad  performance  from  hard 
exercises has caused a tendency among the teachers to present many easy and few 
hard exercises, and let students pass without solving any of the hard ones.

If students do their homework by pen and paper and check the answers with modern 
applications,  the learning process is  constructive,  and therefore beneficial  for  the 
students. Unfortunately, if students do not immediately know how to approach the 
problem,  they  might  be  tempted  to  obtain  the  solution  by  using  these  modern 
symbolic applications. Students themselves might think they learn something, but it is 
very hard  to  learn  by reading the calculations only.  This  kind of  method is  more 
behavioristic. MathCheck is a tool with very constructive ideology and students really 
construct their own ideas and own formulas and MathCheck gives them the feedback 
immediately. Behaviorism and constructivism were compared in [4].

2 CURRENT CAPABILITIES OF MATHCHECK

MathCheck is in an early stage. It  has been developed by one person as a low-
priority project during January−June 2015 and May 2016.

From the point of view of users, MathCheck is a web page with an input box. The 
user types or pastes the solution to the box and clicks the submit button. MathCheck 
gives a reply of the kind in Fig. 1. To type a new solution or modify the previous one, 
the user may click the back button of the web browser. More than one solution can 
be processed in the same batch by separating them with #newproblem.

Currently MathCheck can deal with addition, subtraction, multiplication (both invisible 
and  ·),  division,  absolute  value,  square  root,  power,  logarithm,  sin,  cos,  tan,  and 
derivatives. Numbers can be integers, fractions, mixed numbers, decimal numbers, 
and π and e . Simultaneously there can be at most three variable names, chosen 
from small-case and capital letters (excluding  e).  So MathCheck can be used, for 
instance, to check whether the power function is associative, by typing a^(b^c) = 
(a^b)^c.  Variables from i to n and I to N assume integer values, while the 
rest assume real values.

MathCheck checks chains of relations, where the relation operators may be <, ≤, =, 
≥,  or  >.  MathCheck checks each relation by first  trying to  prove it  using a proof 
engine that is currently rather simple. If this succeeds, MathCheck paints the relation 
symbol green. If it fails, then MathCheck tries to find a counter-example by trying 
many combinations of values of variables. With other relations than =, MathCheck 
also uses a numeric hill-climbing algorithm to find a counter-example. If no counter-
example is found, then MathCheck paints the relation symbol black.

One  of  the  strengths  of  MathCheck  is  that  it  is  very  careful  with  undefined 

expressions.  For  instance,  while  Wolfram  Alpha  [3]  claims  that x2

x
=x and

(√ x)
2
=x are true, MathCheck reports of the former that if x=0 , then the left hand 

side  is  undefined  while  the  right  hand  side  yields 0 ,  and  of  the  latter  that  if
x=−1 , then the left hand side is undefined while the right hand side yields −1 . 

(The formulae can be given to both tools as x^2/x = x and (sqrt x)^2 = x.) 
This is important in mathematics. The advertisement image [5] of the Viope Practice 
Tool  [6]  shows no awareness of  this issue.  In  our  opinion it  is  dangerous.  If  the 

student  starts  solving x2
+x−2
x+2

=1 by  multiplying  both  sides  with x+2 without 
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recording that x must not  be −2 ,  then,  in  addition to  the correct  solution 2 , 
also an incorrect solution −2 is obtained.

In MathCheck, value combinations can be excluded from the domains of expressions 
with  #assume  …  #enda.  MathCheck rejects  (x^2+x­2)/(x+2) = x­1  but 
accepts  #assume x!=­2 #enda (x^2+x­2)/(x+2) = x­1.  This  kind of  an 
assumption can be any logical expression composed of relations with the ¬, ∧, and ∨ 
operators that is never undefined.

The complicated rules for exponentiation when the base is negative (or zero) have 
been  implemented.  While  Wolfram  Alpha  deems  (­8)^(2/3)=4  as  false, 

MathCheck  accepts  it.  (To  (­8)^(2/3)=  Wolfram  Alpha  replies   and 
approximates it as −2+3.46 i ).

The experiments reported in this study were made with the June 2015 version of 
MathCheck.  It  computes  with  precise  rational  numbers  until  the  numerator  or 
denominator  grows  too  big,  and  then  moves  to  double  precision  floating  point 
arithmetic.  Great care had been taken to  avoid false alarms caused by rounding 
errors,  but  their  possibility  had not been fully  ruled out.  There are no reports  on 
students having encountered false alarms in the experiments. However, teachers that 
were preparing exercises have met them once or twice.

In May 2016, double precision arithmetic was replaced by interval  arithmetic that 
maintains two double precision values such that the correct value is between them. 
This is believed to remove false alarms altogether. Unfortunately, interval arithmetic 
was exceptionally tricky to implement, so the possibility of false alarms caused by 
programming bugs cannot be ignored until there is more experience with the new 
version.

3 UNDECIDABILITY, COMPUTER MATHEMATICS, AND MATHCHECK

It is a fundamental result in theoretical computer science that there is no algorithm 
that  always  replies  correctly  to  any  mathematical  question  in  a  finite  time.  This 
phenomenon, called undecidability, already arises with the mathematical concepts 
known to MathCheck. For instance, if f (x) can be written in the input language of 
MathCheck, then MathCheck can be challenged to prove or disprove the existence of 

solutions to f (x)=0 by writing
1

( f (x))2
>0 . If there is no solution, then MathCheck 

should accept it as correct, but if there is a solution, then ideally MathCheck should  
report  that  the  left  hand side  is  undefined with  such a  value  of x .  As  another 
example, the absolute value function causes trouble to finding counter-examples to 
inequations, but this cannot be solved by leaving the absolute value function out, 
because it can be implemented as √ x2 , and leaving either square or square root 
out would seriously damage the purpose of MathCheck.

Because  of  undecidability,  all  non-trivial  computer  mathematics  systems  are 
imperfect in one way or another. The best that can be aimed at is that the system 
either  gives  the  correct  answer  or  replies  “I  don't  know”.  By  implementing  more 
advanced heuristics, the “I don't know” answer can be made rarer. There is no end to 
how far the system designer can go in this direction, so the designer must just stop 
somewhere. The designers of Wolfram Alpha chose to stop before implementing the 
full set of rules for exponentiation with a negative base, the designer of MathCheck 
chose to go that step further. Whether or not some feature is worth implementing 
depends on the purpose of the system and the difficulty of implementing the feature.

The purpose of MathCheck is to give pedagogically useful feedback to the students. 
As  a  consequence,  wide  range  of  mathematical  concepts  was  considered  more 
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important than the ability to always give an answer. MathCheck gives no answer by 
painting  the  relation  symbol  black  (instead  of  red  or  green).  The  goal  is  that 
MathCheck must give no false alarms (or must give them so infrequently that it is not 
a problem), and it must give true alarms “reasonably often”, whatever that means.

In practice, unless a strongly restrictive #assume … #enda is used, MathCheck is 
very  good in  giving  true  alarms for  the  following reasons.  Equalities  of  the  form
f (x)=g (x) typically  only  have  a  small  number  of  solutions,  when f (x) and
g(x) are  composed  of  functions  known  to  MathCheck  and  are  not  the  same 

function. Therefore, it is highly likely that at least one of the value combinations that 
MathCheck tries is not a solution and thus qualifies as a counter-example. If the user 
knows the value combinations that MathCheck tries, then it is possible to construct
f (x) and g(x) such that MathCheck fails to see that they are different. However, 

the possibility that a student accidentally hits such f (x) and g(x) is small.

With an inequation such as f (x)≤g (x) ,  MathCheck uses several  starting points 
and tries to walk from each into a direction that makes f (x)−g (x) grow. Here, too, 
in typical situations where f (x)≤g (x) does not hold, it is highly probable although 
not  certain  that  at  least  one of  the walks eventually  makes f (x)−g (x) so much 
positive that the result is certainly positive according to the interval arithmetic that 
MathCheck uses. With both equations and inequations, MathCheck can be blinded 
by  choosing f (x) and g(x) so  that  evaluating  any  counter-example  leads  to 
outside  the  range  of  double-precision  arithmetic.  Again,  it  is  possible  but  rare, 
because it requires, for instance, the exploitation of the 16 th decimal or the use of 
intermediate results that are bigger than 10³ .⁰⁸

All this means that MathCheck never gives false alarms (assuming that there are no 
programming bugs), but sometimes, not very often, fails to give a true alarm. This 
suffices for giving students feedback. This also means that the current version of 
MathCheck must not be used for automatic assessment of examinations. Automatic 
assessment  is  possible  if  either  the  questions  are  restricted  so  that  a  decision 
algorithm for checking the answers exists (as is trivially the case if the correct answer 
is unique), or the tool can give a definite verdict in most cases and delegates the rest  
to a human. The current version of MathCheck gives a definite verdict in most cases 
where it is “incorrect” (that is, paints the relation symbol red), but often does not give 
a  verdict  when it  is  “correct”  (that  is,  paints  the  relation  symbol  black  instead of 
green).

Improving  the  proof  engine  of  MathCheck  is  one  reasonable  direction  for  future 
development. So it may be that one day MathCheck becomes usable for automatic 
assessment. However, it is a low-priority goal. The high-priority goal is to make it 
possible for students to get automatic feedback that helps them study on their own. 
In  particular,  MathCheck should be able to  give feedback on any step of  a  long 
calculation, instead of just checking the eventual result.

Because  of  this  philosophy,  no  user  identification  has  been  implemented  to 
MathCheck, and there is no button “send my answer to the teacher”. Leaving user 
identification out saved us from a lot of time-consuming but scientifically uninteresting 
programming, and made MathCheck simpler to use.

If sending answers to the teacher is desired, the student can easily copy the answer 
and send it via email, or the features offered by a learning environment can be used. 
Sending via email  requires two mouse button clicks (to select the answer box of 
MathCheck  and  select  the  email  window)  and  three  key  pressings  (<CTRL>-A, 
<CTRL>-C, and <CTRL>-V), which is so easy that spending time on programming an 
alternative solution was not justified. The teacher can equally easily copy the answer 
to MathCheck, click submit, and inspect the answer similarly to inspecting an answer 
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that has been hand-written on paper, with the exception that the teacher need not 
spend effort on checking the detailed correctness of each step, because MathCheck 
has done that. More than one solution can be processed in this way in a single batch,  
by separating them with #newproblem.

4 THE INPUT SYNTAX

As is obvious from the examples in this study, the input language of MathCheck is  
textual.  This  is  similar  to  many  other  computer  mathematics  systems,  including 
MatLab [7] and Wolfram Alpha [3], and different from the formula editors in Microsoft  
Word  and  LibreOffice.  It  is  also  different  from modern  handheld  CAS (computer 
algebra system) calculators used at schools.

In the latter input method, mathematical symbols can be selected from menus. After 
selecting the summation symbol  ∑, the window shows it with boxes above, below, 
and to the right of it. The user navigates between the boxes by clicking the mouse or  
with arrow keys and fills in the boxes in a similar manner, choosing symbols from 
menus and so on. This user interface ensures that right ingredients go to right places  
(for  instance,  what  should  be  above  the  symbol  ∑,  goes  there).  It  may  also  be 
possible to feed in the formula or parts of it as text.

The biggest differences between the two input methods are that with the latter, the 
user sees the formula as it is printed in mathematics already when feeding it in, and it  
is not necessary to use special syntax such as {…} over {…} to control the 
structure of the formula. For these reasons newcomers and those who write formulae 
only seldom tend to find it easier. Experienced mathematics authors find it slow and 
clumsy. For an example of a discussion on the two input methods and attempts to 
combine their advantages, please see [8].

Originally we took it for granted that the input language might be a problem but not a 
major problem. Every engineering student in Tampere University of Technology must 
pass  a  programming  course  and  thus  become  familiar  with  some  programming 
language.  They  also  use  MatLab  in  at  least  one  course.  Unofficial  information 
obtained  from  the  students  tells  that  many  use  Wolfram  Alpha  when  solving 
homework exercises in mathematics courses (or even use Wolfram Alpha to solve 
the problems on their behalf). So we expected that everyone is familiar with textual 
feeding in of mathematics.

What we did not think about in advance was that the students in our first experiment 
(please see Section 5) had just arrived to the university, and thus had not yet learnt  
any  programming  language,  MatLab,  or  Wolfram  Alpha.  They  did  have  serious 
problems  with  the  input  language.  This  affected  negatively  the  results  of  the 
experiment, as discussed in Section 5. It  was quite hard for the students to start 
using MathCheck. Several  students told us that  the interface was difficult  to use. 
Fortunately, after a couple of exercises, they began to succeed well.

The lesson is that until the engineering world switches completely to what-you-see-is-
what-you-get user interfaces, the ability to use a textual user interface for feeding in 
structured information must be treated as a learning goal in itself that is explicitly 
addressed in some course early on in the curriculum.

5 EXPERIENCE

We have tested MathCheck in two different courses: Engineering Mathematics 1 in 
autumn  2015  (a  first-year  course)  and  Algorithm Mathematics  in  spring  2016  (a 
second-year course). More than 150 students used MathCheck in the former and 120 
students in the latter. The idea was that the students would use MathCheck in one or 
two homework assignments every week in the first case, and a few times with very 
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special exercises in the second case. Students used it  to check their solutions to 
homework assignments. At the end of the first course, the students gave us feedback 
on using MathCheck.

In  Engineering  Mathematics  1,  students  used  MathCheck  when  studying  limits, 
continuity,  and  derivatives,  in  particular  when  they  manipulated  expressions.  For 

example, one of the assignments was “Prove that  sinh2(x )=
cosh (2x )−1

2
. Check 

your calculation using MathCheck.”  The experiment taught us teachers that if  the 
exercises are too easy, then there is no point in using MathCheck. If no intermediate 
steps are needed to solve an exercise, then the ability of MathCheck of checking 
intermediate steps is of no advantage. It may be that too easy exercises were given, 
because  giving  rather  easy  exercises  has  been  the  tradition,  because too  many 
students have been unable to solve more difficult exercises at home. In any event,  
the experiment did not appropriately test the ability of MathCheck to help students 
solve more difficult problems at home.

As feedback from Engineering Mathematics 1, we had 120 answers. Of them, 53 
considered MathCheck useful, 48 were of the opposite opinion, and 19 replied that 
they had not  used MathCheck.  Inconsistencies in  the replies revealed that  many 
students who reported MathCheck as useless had actually not tried it, although they 
claimed that they had. For instance, many students said to our research assistant in 
group interviews that the input language of MathCheck is a stumbling block; instead 
of what it is like, it should be like the input language of MatLab. In reality, the part of  
the  input  language  that  the  students  had  to  use  is  virtually  the  same  as  the 
corresponding part of the input language of MatLab. We guess that in the interview 
situation, when one student had given this answer, many others found it as a nice 
excuse for not trying MathCheck. So they joined the opinion without much thought.

It  also  seems  that  many  students  rejected  or  failed  to  understand  the  idea  of 
checking the solution in full, instead of finding or checking the final answer. Their 
previous experience has been with symbolic calculators and other tools that find the 
answer,  and  we  failed  to  communicate  them  that  the  purpose  of  MathCheck  is 
different.

Because the exercises were too easy in the Engineering Mathematics 1 experiment, 
more complicated exercises were given to the students in the Algorithm Mathematics 
experiment.  For  example,  one  of  the  assignments  was  “Simplify  the  expression

f (x)=
ln ⁡(( x2

+4 x−12)
2
)

ln ⁡(100)
−

ln(x+6)

ln 10
,  and  give  the  answer  in  terms  of  the  log-

function“. In  Engineering Mathematics 1  we asked only “check your answer using 
MathCheck”, but in Algorithm Mathematics we demanded students to send a PDF file 
of their calculations via the Moodle course page.

The author TK has extensive experience of many years of teaching mathematics to 
first-  and second-year students. She has seen that it  is very hard for students to 
approximate expressions. At school they are used to calculating strict values, but in 
the real word it  is  more valuable to estimate limits.  In the Algorithm Mathematics 
course the students must approximate to calculate time complexity. TK observed that 
the  students  who  used  MathCheck  for  studying  how  to  approximate  functions 
upwards  or  downwards,  understood  the  concept  of  time  complexity  quicker. 
Nevertheless, we have not done any research on the actual learning process, we 
only studied the students’ opinion in using MathCheck. The next step is to do more 
research on the actual learning process.

In  addition  to  the  previously  mentioned  MathCheck  exercise,  there  was  another 
exercise in the same week: Approximate the expression log ⁡(n4

+n3
−5) upwards to 
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find c∈ R and n0∈N such  that log(n4
+n3

−5)≤c log(n) when n≥n0 .  A  week 
later  the  concept  of  time  complexity  was  considered.  There  were  two  exercises, 
which we asked the students to check with MathCheck and deliver the output  of 
MathCheck  as  a  PDF  file  via  Moodle:  Prove  using  the  definition  that  (a)

2n3
−n2

+5n=O(n3
) and  (b) 2n2

−10n+3=Ω(n2
) .  By completing the exercises at 

both weeks, students earned two exercise bonus points.

At the examination, there was the following question about time complexity: Prove 
that log(2n3

−6n2
)=Ω( log(n)) , using the definition. Table 1 shows the dependency 

between the points earned from this question and the points earned from MathCheck 
exercises.

Table 1. Numbers of students earning MathCheck and examination points

0 exam points 1 exam point 2 exam points
0 MathCheck points 49 8 14

1 MathCheck point 9 8 13

2 MathCheck points 4 8 22

The correlation between the exam points and MathCheck points is 0.4845. The p-
value  is  less  than  0.001,  which  means  that  the  correlation  is  statistically  highly 
significant. Successful use of MathCheck clearly predicts success in the examination. 
We do not know how much this was because of MathCheck helping learning and 
how much because the best students tend to succeed in almost everything.

MathCheck was also tried in a high school course with 19 pupils [9]. Because pupils 
had no idea of how to use a textual input language, the experiment was a failure.  
53% of the pupils deemed MathCheck as difficult to use, 16% found it useless, and 
31% replied that it is or could be useful.

6 CONCLUSIONS AND FUTURE PLANS

Our pedagogical experiments have been small and the results have been affected by 
the input language problem. Furthermore, the experiments were designed too much 
as add-ons to existing courses, and not enough attention was paid to designing the 
problems where MathCheck was to be used. The ability of MathCheck of checking 
intermediate steps of  a solution is  only useful  if  the problem is  so laborious that 
intermediate steps are needed, and the existing problems were not sufficiently like 
this.

As  a  consequence,  there  is  not  yet  any  strong  evidence  in  favour  or  against  
MathCheck. It  has become evident that MathCheck requires new kind of thinking 
from both  teachers  and  students.  Of  course  we hope that  this  is  a  symptom of 
MathCheck directing the students towards the kind of mathematical thinking that we 
wish them to acquire.  For  instance,  we want  them to  be fluent  with  the abstract 
recursive structure of formulae (that is, how formulae consist of sub-formulae). The 
problems with the input language of MathCheck suggest that they do not have that 
skill when they arrive at the university.

The next planned major feature is propositional logic. There it is easy to implement a 
perfect  proof  engine.  This  would  make  it  possible  for  university  students  to  get 
exercise on logic and simple proofs.

Regarding predicate logic, the development of a sufficient checking algorithm is far 
too difficult.  A limited idea seems possible, where the teacher gives MathCheck a 
formula  such  as 1≤k≤n∧∀ i ;1≤i<k :∀ j ; i< j≤n: A [i ]<A [ j ] and  expresses  the 
same claim to the student in natural language. The student has then to write the 
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claim as a formula. MathCheck compares the two formulas and gives the student 
feedback. This makes it possible to get exercise on formulating precise claims. This 
is especially useful for computer science students.

When the proof engine becomes better, MathCheck can also be adapted to abstract 
algebra, such as groups, rings, and fields. Unlike in more familiar mathematics, the 
types  of  proofs  that  students  are  expected  to  learn  in  abstract  algebra  are  very 
similar to how computer proof systems work. Furthermore, in small finite algebraic 
structures perfect checking is possible by trying all possible elements.
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