44" SEF| Conference, 12-15 September 2016, Tampere, Finland

Design of Open Educational Resources for a Programming Course
with a Focus on Conceptual Understanding

D. Timmermann'
Research Assistant, Engineering Education Research Group
Hamburg University of Technology
Hamburg, Germany
E-Mail: dion.timmermann@tuhh.de

C. Kautz
Professor for Engineering Education, Engineering Education Research Group
Hamburg University of Technology
Hamburg, Germany
E-Mail: kautz@tuhh.de

Conference Key Areas: Open and Online Engineering Education
Keywords: student understanding; tutorial worksheet

INTRODUCTION

Programming is part of many — if not most — engineering degree programs. However, tra-
ditional introductory programming courses are often considered difficult by students. [1]
Internationally, almost a third (32.3%) of students fail their introductory computer sci-
ences course. [2] Consequently, the improvement of programming education will be
beneficial for many students.

Funded by the Hamburg Open Online University (HOOU) Project, the Engineering
Education Research Group at Hamburg University of Technology is currently engaged in
the development of new Open Educational Resources on programming education. In the
following, we will describe how we identified the most relevant concepts to address in the
materials, why we decided to use “Tutorials” instead of traditional end-of-chapter type
exercises, and show an example for the new materials. We hope this paper allows us to
get feedback from the education research community to further optimize our materials.

1 METHODOLOGY

Our work is based on the assumption that students develop misconceptions (often also
called alternative conceptions) when constructing their own understanding of subject
matter. [3—5] While this cannot be avoided, carefully designed learning environments
can help students overcome their misconceptions through a process of conceptual
change. [6] In order to create instructional materials for such environments, one has

'Corresponding Author
D. Timmermann
dion.timmermann@tuhh.de



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

to be aware of conceptual understanding of subject matter. [7] To investigate students’
understanding, Concept Inventories can be used.

2 PRIOR RESEARCH ON STUDENT UNDERSTANDING OF PROGRAMMING

There is a rich body of research on programming education. Many studies investigate
the benefits and drawbacks of different programming languages and programming
paradigms as well as pedagogical strategies. [1,8] There are also plenty of studies
investigating the learning process required to become an expert programmer and
the reasons for bugs in novices’ source code. This kind of research is often named
psychology of programming, i. . the investigation of the learning of programming using
approaches from cognitive psychology. [5]

The research that investigates the reasons for bugs is based on the assumption that at
least some of the mistakes students make are not random. This assumption is similar
to the idea of common student misconceptions, i. e. students’ alternate conceptions
that have to be overcome in order to reach expert level thinking. [3, 4] As part of this
research, as well as independently from it, several misconceptions on programming
have been identified. [5,9] As Clancy notes “Users of modern programming languages
and environments have no shortage of opportunities to form misconceptions”, but he
also stresses that “many of the ‘old’ aspects of programming” as e. g. loops and function
return behavior are not fully explored. [9]

To measure the frequency of common misconceptions and student understanding
in general, many researchers employ Concept Inventories. Concept Inventories are
standardized tests that evaluate student understanding of all concepts relevant for one
topic. In the field of computer science, there are Concept Inventories for some topics,
as e. g. “Logic Design”. [10] The newly developed SCS1 Assessment [11] seems to be
the only concept inventory on programming that is publicly available.

3 ANALYSIS OF STUDENTS’ DIFFICULTIES IN PROGRAMMING

In this section, we are going to present how we measured students’ difficulties with
programming. We will show how we identified the most troublesome concepts and
explain why we believe these are caused by common misconceptions.

We intend to develop materials that specifically address the topics most troublesome
for students. To identify these topics, we measured students’ conceptual understanding
of programming using the SCS1 Assessment before and after they took a traditional
introductory programming course at Hamburg University of Applied Sciences. The
university course is described in more detail in a different publication. [12]

3.1 The SCS1 Assessment

To investigate students’ conceptual understanding of programming, we used the SCS1
Assessment, a standardized 27 question multiple-choice test that evaluates students’
understanding of programming using code completion, code tracing, and qualitative
questions. The test covers programming fundamentals, loops, conditionals, arrays,
function parameters and return values as well as recursion. It uses a pseudo language
for which a reference sheet is handed out together with the test. The use of this
pseudo language makes it possible to compare test performances regardless of the
programming language students have learned.? [11,13]



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

3.2 Identification of Troublesome Concepts

As part of our research, a German translation of the SCS1 was given twice. [12] Once,
as a pre-test several days before the course started and then as a post-test during
the last lecture, but before the last lab exercises. 124 students participated in the pre-
test and 110 in the post-test. Using self-generated identification codes, each test was
marked with an identification code by the student who answered it. [14] For 78 pre-tests,
we were able to find a post-test that was answered by the same student. As the SCS1
is quite new and has not been used by our research group before, we did not have

2Please contact scsiassessment@gmail . com for access to the SCS1 Assessment.

100%

80%

60%

40%

Absolute Gain of Difficulty Index

1 1
20% 40% 60% 80% 100%
Pre-Test Difficulty Index

Fig. 1: Difficulty indices (percentages of correct answers) of all questions in the SCS1
for the pre- and the post-test. While the horizontal axis shows the pre-test difficulty
index, the vertical axis shows the absolute gain of the difficulty index from the pre-test
to the post-test. The post-test difficulty index can be found on the diagonal axis. The
questions colored red were considered particularly troublesome. The dashed lines
indicate learning gains calculated as a fraction of absolute gain and maximum possible
gain. N=78.



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

access to reference values for the difficulty of the questions. Thus, we were only able to
compare the questions with each other but not the performance of the students in the
course under investigation with the performance of students attending other courses.

To identify the questions most troublesome for students, we used the plot shown in
Figure 1. This plot is similar the one used by Hake in [6] to compare the effect of
traditionally taught courses with the effect of courses using interactive engagement.
The horizontal axis indicates the pre-test difficulty index, i.e. the percentage of students
that correctly answered a question. The vertical axis indicates the gain in percentage
points, a measure for how many more students correctly answered a question in the
post-test. Consequently, the diagonal lines indicate post-test item difficulty. Each point
corresponds to one question. The data shown are based on the 78 pre- and post-test
pairs. The data for the tests without a respective post- or pre-test, however, do not differ
much.

The pre-test difficulty indices of most questions were between 0% and 15 %, indicating
that students had quasi no knowledge of programming before attending the course. The
post-test difficulty indices of the questions were between 3 % and 68 % and thus varied
much more. Consequently, there was also a high variation in the absolute gains of the
difficulty indices.

The 13 questions denoted by red data points, were considered to be most troublesome
for students. As can be seen, these data points are quite noticeably separated from the
blue data points, marking questions not considered most troublesome. The difference
between both groups of questions is best described by the learning gain, the ratio of
the absolute gain of difficulty index and the maximum possible gain of the difficulty
index. While the learning gains of all questions marked in blue are at least 17 %, the
learning gains for all questions marked in red do not exceed 10 %. The learning gains
are highlighted by the dashed lines in Figure 1.

Based on these troublesome questions, we identified the most troublesome concepts.
For each concept in the test, we identified how often it occurred among the troublesome
questions, compared to how often occurred among all questions. Our analysis revealed
that the most troublesome concepts were nested definite loops, arrays, and recursion.
While it is not surprising that recursion is troublesome for students [9], we were surprised
to find that students had trouble with nested definite loops.

3.3 Distribution of answers

The SCS1 has 5 answering options for each question, resulting in an expected difficulty
index (percentage of correct answers) of 20 % when students guess. However, in many
concept inventories, the difficulty indices of some questions are actually significantly
lower than the guessing probability. These low difficulty indices are caused by some
of the answering options being good distractors, i. e. answers that seem to be correct
when a student has a certain misconception. Distractors are usually chosen so that
each common misconception maps to exactly one distractor.

We had expected that many students in the pre-test had no prior contact with program-
ming and would quite possibly not even understand the questions. In order to not force
these students to guess an answer, we added a sixth option to each question. This
option was labeled “I am not sure” and students were instructed to select this option if
they would otherwise have to guess the correct answer.

The histogram in Figure 2 shows how many students selected the option “I am not sure”
for how many questions. While the majority of students selected “I am not sure” for most



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

questions in the pre test (see Figure 2a), the majority of students did only select this
option for a few questions in the post-test (see Figure 2b). This shows that students
were quite unsure about subject matter in the pre-test but felt fairly sure about their
answers in the post-test. The low number of correct answers in the post-test indicates
that students did not guess but instead erroneously thought to know the answer.

Our analysis showed that the incorrect answers were not randomly distributed, but that
instead one or two incorrect answers were selected for most questions. Thus, there
must be common misconceptions that many of the students had.

In the following section, we will show how common misconceptions are addressed in
subjects as physics, mechanical enginnering, or electrical enginnering.

4 ADDRESSING KNOWN STUDENT MISCONCEPTIONS IN OTHER SUBJECTS

To help students overcome common misconceptions, several didactical approaches
have been suggested and tested. [15, 16] One of these approaches are the so-called
“Tutorials”. Tutorials are worksheets first developed by the Physics Education Research
Group at University of Washington. They are usually worked on “face-to-face” by students
in groups of three or four. Tutorials guide students through a careful analysis of a concept
by using many short questions. The questions are designed so that students are forced
to investigate and discuss every relevant aspect of the concept.

McDermott explains the reasoning behind this as follows: “There are difficulties for
which no significant conceptual change appears to take place unless students become
engaged at a deep intellectual level”. [7] One of the various methods used to achieve
this deep intellectual engagement is to provoke students “to make a particular error [...].
The underlying conceptual or reasoning difficulty is then explicitly addressed”. [7] One
example for this would be the “elicit, confront, resolve” [7] approach used in several
Tutorials. An example for this strategy can be found in a Tutorial on the electric potential
and open circuit voltage developed by our group. [17] The Tutorial starts with a small quiz.
Students are given the circuit shown in Figure 3 and are asked to rank the voltages Vag,
Vac, Vap, and Vg by their absolute value. With this ranking, students’ knowledge on the
voltage across open circuits/switches is elicited. The Tutorial then introduces students to
the concept of the electric potential and the use of color coding to visualize the different
potentials in a circuit. The middle section of this Tutorial is shown in Figure 3. Students
are asked to use color coding on and to calculate the potentials in the circuit from
the quiz (see 2.1. in Figure 3). Based on the electric potentials of the circuit they then
calculate the voltages from the quiz again (see 2.6 in Figure 3) and are then confronted

20 T

5 . mwﬂhm LU xaalil
5 10 15 20 25

0 ] ) 0 5 10 15 20 25
Number of times "I am not sure" was selected in Pre-Test Number of times "l am not sure" was selected in Post-Test

(a) Pre-Test, N=124. (b) Post-Test, N=110.

=

o
™]
]

Students
= =
o [4)]
Students
=
o

o
o

o

Fig. 2: Histogram of the number of questions for which a student indicated they did not
know the answer to a question.



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

Consider the following circuit, which contains identical bulbs, ideal batteries with a source
voltage of 1.5V, a ground and an open switch. The switch stays open until Task 3.

2.1 Colorize all points and wires, according to the color A B C
coding introduced in part 1.1. ®

2.2 Assign a potential to each color.

Circuit 2

2.6 Rank the voltages Vag, Vac, Vap und Vpo according to their absolute value. Use the
potentials to determine the voltages. Does your answer match the answer you gave in
the pre-test?

Discuss your findings with a tutor.

2.7 What is the voltage between both ends of the open switch?

Fig. 3: Excerpt from the middle of the tutorial worksheet.

(see 2.7) with their previously different answer in the quiz. The resolution of this cognitive
conflict is not shown in the figure.

5 DESIGN OF TUTORIALS FOR COMPUTER SCIENCE

When we started this project, we originally planned to design regular programming
tasks, similar to end-of-chapter tasks in many textbooks. This is a proven format for
programming exercises and would have allowed students to practice programming in
a manner similar to programming in a work environment. However, as problems in
programming often have several possible solutions, we could not have predicted with
certainty how students’ solutions would have looked like. Consequently, we could have
hardly “forced” students to make certain mistakes or ask questions on specific parts of
their code. Additionally, students could get stuck of things we felt much less important at
that point, as e. g. the correct inclusion of a library.

To mitigate these issues, we decided to design Tutorial-worksheets, which were de-
scribed in the previous section. Tutorials allow us to address specific concepts much
better, as the questions can be more specific. We can show students excerpts of code
without having to show the rest of the program. Additionally, we can much better provoke
students to make the errors we intend to discuss instead of having to deal with the
errors students make. Thus, we have more control over what students think about.

In the following subsections, we will outline our plans for the Tutorials.
5.1 Concepts Addressed in the Tutorials

As described above, we have found the concepts of nested definite loops, arrays and
recursion to be most problematic for students. These are the concepts we will first
develop Tutorials for. Each concept will be addressed in a separate Tutorial. However, as



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

3 Nested Loops

Examine the source code at right.

3.1 What does this code print?
Explain your reasoning.

T for (y = 1; y <= 3; yt+) {

2 for (x = y; x <= 3; x++) {
3 printf(“0”);

4 }

5 printf(“\n”); // Line Break
6 3

3.2 Consider the following conversation between three students. With which statements do
you agree? With which statements do you disagree?

Student 1:

A for-Loop is used whewn something should be repeated a fixed
number of times. (n this case both Loops count to four. As the
outer loop is for counting the rows and the tnner Loop for
counting the ‘O’s in each row, a square of 3-by-3 ‘O’s ls
printed. ()

Student 2: Yow are right, for-loops are used to repeat something a fixed

Student 3:

3.3In the following, the table at right will be filled to
visualize the values of the counting variables x and y.

a. What is the first value the variable y is assigned?

b. What is the first value the variable x is assigned? Mark
this combination of values for both variables in the table vy
at right by writing an ‘A’ into the field.

c. How do the variables change when each line of code

number of times. How often the Lnmer loop is repeated,
however, depends on the outer Loop. Each time the inner Loop
Ls entered, the variable x Ls tnitialized with the current value
of Y. Thus, a triangle is printed. (8°)

But both loops increment the counting variables with the
“+ 4" expression. Thus, in the lower Lines, where Yy is Larger,
x must also be larger. The triangle must be wider at the
bottom thaw at the top. (3s.)

AN (WD = O

executed? Mark each step with a letter (‘B’, ‘C’, ...).

d. How do the values in the table compare to your answers in 3.1 and 3.2?

e. Which aspects of your entries in the table are represented in the code output?
Which ones are not?

Fig. 4: Early Example of the middle section from a Tutorial on Nested Loops.




44" SEF| Conference, 12-15 September 2016, Tampere, Finland

the understanding of recursion most likely requires a solid understanding of functions,
we plan to also develop a Tutorial on functions.

5.2 Example for a Tutorial

Figure 4 shows the middle section (page 3) of a Tutorial on nested loops. This section
follows the elicit, confront, resolve approach introduced above. In Task 3.1, students
are asked what the output of the given source code would be. With this task, their
understanding of the nested for-loops is made explicit (elicit). Then, students are
confronted with different interpretations of this code and asked if they agree with those
interpretations. To answer this question, they have to analyze and criticize the reasoning
of three fictitious students. Then, a technique for visualization that was introduced at the
beginning of the Tutorial (not shown in Figure 4) is applied again so that students can
check their interpretation. Ideally, this last task resolves all remaining issues.

6 SUMMARY

We used the SCS1 Concept Inventory to analyze the programming concepts most
troublesome for students attending a introductory programming course at Hamburg
University of Applied Sciences. We found that students had most trouble with the
concepts of nested definite loops, arrays and recursion. The incorrect answers to
many questions concerning these concepts were not distributed evenly, but instead
students favored certain answers, indicating they did not guess but instead applied a
misconception in their reasoning.

To help students overcome misconceptions, these need to be addressed explicitly.
We plan to develop Tutorials, structured worksheets with many short tasks prompting
students to think about concepts in depth. Examples for such worksheets were given
above. As Tutorials haven been shown to be effective in helping students overcome
common misconceptions, we are confident the newly developed OER will also be helpful
to students.

ACKNOWLEDGMENTS

We would like to thank Prof. Skwarek from Hamburg University of Applied Sciences,
who made this research possible by providing access to his students and valuable
lecture time for conducting the pre- and post-test. This OER-project is funded by
the state of Hamburg, Germany, within the Hamburg Open Online University-Project
(http://www.hoou.de/).

REFERENCES

[1] Robins, A., Rountree, J., and Rountree, N. (2003) Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13, 137-172.

[2] Watson, C. and Li, F. W. (2014) Failure rates in introductory programming revisited.
Proceedings of the 2014 conference on Innovation & technology in computer
science education.

[3] Wandersee, J. H., Mintzes, J. J., and Novak, J. D. (1994) Research on Alternative
Conceptions in Science. Gabel, D. L. (ed.), Handbook of Research on science
teaching and learning, Macmillan.

[4] McDermott, L. C. (1993) Guest Comment: How we teach and how students learn -
A mismatch? Am. J. Phys., 61, 295.

[5] Ben-Ari, M. (2001) Constructivism in computer science education. Journal of
Computers in Mathematics and Science Teaching, 20, 45-74.



44" SEF| Conference, 12-15 September 2016, Tampere, Finland

[6] Hake, R. R. (1998) Interactive-engagement versus traditional methods: A six-
thousand-student survey of mechanics test data for introductory physics courses.
American Journal of Physics, 66, 64—74.

[7] McDermott, L. C. (1991) Millikan Lecture 1990: What we teach and what is learned
- Closing the gap. Am. J. Phys., 59, 301.

[8] Hazzan, O., Lapidot, T., and Ragonis, N. (2011) Research in Computer Science
Education. Guide to Teaching Computer Science, pp. 47—62, Springer London.

[9] Clancy, M. (2004) Misconceptions and Attitudes that Interfere with Learning to
Program. Fincher, S. and Petre, M. (eds.), Computer Science Education Research,
pp. 85-100, Taylor & Francis.

[10] Herman, G. L., Loui, M. C., and Zilles, C. (2010) Creating the digital logic concept
inventory. Proceedings of the 41st ACM technical symposium on Computer science
education, pp. 102—106.

[11] Parker, M. C., Guzdial, M., and Engleman, S. (2016) Replication, Validation, and
Use of a Language Independent CS1 Knowledge Assessment. Proceedings of
the twelfth annual International Conference on International Computing Education
Research, Melbourne, Australia.

[12] Timmermann, D., Kautz, C., and Skwarek, V. (2016) Evidence-Based Re-Design
of an Introductory Course “Programming in C”. 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings, Erie, USA.

[13] Tew, A. E. and Guzdial, M. (2011) The FCS1: a language independent assess-
ment of CS1 knowledge. Proceedings of the 42nd ACM technical symposium on
Computer science education.

[14] Direnga, J., Timmermann, D., Lund, J., and Kautz, C. (2016) Design and Application
of Self-Generated ldentification Codes (SGICs) for Matching Longitudinal Data.
Proceedings of the 44th SEFI Annual Conference, Tampere, Finland.

[15] Mazur, E. (1997) Peer Instruction: A User’s Manual. Prentice Hall.

[16] Novak, G. M., Gavrin, A., Patterson, E., and Christian, W. (1999) Just-in-time
teaching: blending active learning with web technology. Prentice Hall series in
educational innovation, Prentice Hall.

[17] Timmermann, D., Lehmann, F., and Kautz, C. (2015) Using Potential to Help
Students Understand Voltage: First Steps in Implementing Effective Instruction.
Proceedings of the 43rd SEFI Annual Conference, Orléans, France.



	Methodology
	Prior Research on Student Understanding of Programming
	Analysis of Students' Difficulties in Programming
	The SCS1 Assessment
	Identification of Troublesome Concepts
	Distribution of answers

	Addressing Known Student Misconceptions in other Subjects
	Design of Tutorials for Computer Science
	Concepts Addressed in the Tutorials
	Example for a Tutorial

	Summary

